Vai al contenuto principale della pagina

Electrical machine fundamentals with numerical simulation using MATLAB/SIMULINK / / Atif Iqbal, Shaikh Moinoddin, Bhimireddy Prathap Reddy



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Iqbal Atif Visualizza persona
Titolo: Electrical machine fundamentals with numerical simulation using MATLAB/SIMULINK / / Atif Iqbal, Shaikh Moinoddin, Bhimireddy Prathap Reddy Visualizza cluster
Pubblicazione: Hoboken, New Jersey : , : Wiley, , [2021]
©2021
Descrizione fisica: 1 online resource (835 pages)
Disciplina: 621.31042
Soggetto topico: Electric machinery
Persona (resp. second.): MoinoddinShaikh <1954->
ReddyBhimireddy Prathap <1993->
Nota di contenuto: Cover -- Title Page -- Copyright -- Contents -- Preface -- Acknowledgements -- Chapter 1 Fundamentals of Electrical Machines -- 1.1 Preliminary Remarks -- 1.2 Basic Laws of Electrical Engineering -- 1.2.1 Ohm's Law -- 1.2.2 Generalization of Ohm's Law -- 1.2.2.1 Derivation of Eq. (1.6) -- 1.2.3 Ohm's Law for Magnetic Circuits -- 1.2.4 Kirchhoff's Laws for Magnetic Circuits -- 1.2.5 Lorentz Force Law -- 1.2.6 Biot‐Savart Law -- 1.2.7 Ampere Circuital Law -- 1.2.8 Faraday's Law -- 1.2.8.1 Motional emf -- 1.2.9 Flux Linkages and Induced Voltages -- 1.2.10 Induced Voltages -- 1.2.11 Induced Electric Fields -- 1.2.12 Reformulation of Faraday's Law -- 1.3 Inductance -- 1.3.1 Application of Ampere's Law to Find B in a Solenoid -- 1.3.2 Magnetic Field of a Toroid -- 1.3.3 The Inductance of Circular Air‐Cored Toroid -- 1.3.4 Mutual Inductance -- 1.4 Energy -- 1.5 Overview of Electric Machines -- 1.6 Summary -- Problems -- References -- Chapter 2 Magnetic Circuits -- 2.1 Preliminary Remarks -- 2.2 Permeability -- 2.3 Classification of Magnetic Materials -- 2.3.1 Uniform Magnetic Field -- 2.3.2 Magnetic‐Field Intensity -- 2.4 Hysteresis Loop -- 2.4.1 Hysteresis Loop for Soft Iron and Steel -- 2.5 Eddy‐Current and Core Losses -- 2.6 Magnetic Circuits -- 2.6.1 The Magnetic Circuit Concept -- 2.6.2 Magnetic Circuits Terminology -- 2.6.2.1 Limitations of the Analogy Between Electric and Magnetic Circuits -- 2.6.3 Effect of Air Gaps -- 2.6.3.1 Magnetic Circuit with an Air Gap -- 2.6.3.2 Magnetic Forces Exerted by Electromagnets -- 2.7 Field Energy -- 2.7.1 Energy Stored in a Magnetic Field -- 2.7.1.1 The Magnetic Energy in Terms of the Magnetic Induction B -- 2.7.1.2 The Magnetic Energy in Terms of the Current Density J and the Vector Potential A -- 2.7.1.3 The Magnetic Energy in Terms of the Current I and of the Flux Ψm.
2.7.1.4 The Magnetic Energy in Terms of the Currents and Inductances -- 2.8 The Magnetic Energy for a Solenoid Carrying a Current I -- 2.9 Energy Flow Diagram -- 2.9.1 Power Flow Diagram of DC Generator and DC Motor -- 2.9.1.1 Power Flow Diagram and Losses of Induction Motor -- 2.9.1.2 Rotational Losses -- 2.10 Multiple Excited Systems -- 2.11 Doubly Excited Systems -- 2.11.1 Torque Developed -- 2.11.1.1 Excitation Torque -- 2.11.1.2 Reluctance Torque -- 2.12 Concept of Rotating Magnetic Field -- 2.12.1 Rotating Magnetic Field due to Three‐Phase Currents -- 2.12.1.1 Speed of Rotating Magnetic Field -- 2.12.1.2 Direction of Rotating Magnetic Field -- 2.12.2 Alternate Mathematical Analysis for Rotating Magnetic Field -- 2.13 Summary -- Problems -- References -- Chapter 3 Single‐Phase and Three‐Phase Transformers -- 3.1 Preliminary Remarks -- 3.2 Classification of Transformers -- 3.2.1 Classification Based on Number of Phases -- 3.2.1.1 Single‐Phase Transformers -- 3.2.1.2 Three‐Phase Transformers -- 3.2.1.3 Multi‐Phase Transformers -- 3.2.2 Classification Based on Operation -- 3.2.2.1 Step‐Up Transformers -- 3.2.2.2 Step‐Down Transformers -- 3.2.3 Classification Based on Construction -- 3.2.3.1 Core‐Type Transformers -- 3.2.3.2 Shell‐Type Transformers -- 3.2.4 Classification Based on Number of Windings -- 3.2.4.1 Single‐Winding Transformer -- 3.2.4.2 Two‐Winding Transformer -- 3.2.4.3 Three‐Winding Transformer -- 3.2.5 Classification Based on Use -- 3.2.5.1 Power Transformer -- 3.2.5.2 Distribution Transformer -- 3.3 Principle of Operation of the Transformer -- 3.3.1 Ideal Transformer -- 3.4 Impedance Transformation -- 3.5 DOT Convention -- 3.6 Real/Practical Transformer -- 3.7 Equivalent Circuit of a Single‐Phase Transformer -- 3.8 Phasor Diagrams Under Load Condition -- 3.9 Testing of Transformer -- 3.9.1 Open‐Circuit Test -- 3.9.2 Short‐Circuit Test.
3.10 Performance Measures of a Transformer -- 3.10.1 Voltage Regulation -- 3.10.1.1 Condition for Maximum Voltage Regulation -- 3.10.1.2 Condition for Zero Voltage Regulation -- 3.10.2 Efficiency of Transformer -- 3.10.3 Maximum Efficiency Condition -- 3.11 All‐Day Efficiency or Energy Efficiency -- 3.12 Autotransformer -- 3.13 Three‐Phase Transformer -- 3.13.1 Input (Y), Output (Δ) -- 3.13.2 Input Delta (Δ), Output Star (Y) -- 3.13.3 Input Delta (Δ), Output Delta (Δ) -- 3.13.4 Input Star (Y), Output Star (Y) -- 3.14 Single‐Phase Equivalent Circuit of Three‐Phase Transformer -- 3.15 Open‐Delta Connection or V Connection -- 3.16 Harmonics in a Single‐Phase Transformer -- 3.16.1 Excitation Phenomena in a Single‐Phase Transformer -- 3.16.2 Harmonics in a Three‐Phase Transformer -- 3.16.2.1 Star‐Delta Connection with Grounded Neutral -- 3.16.2.2 Star‐Delta Connection without Grounded Neutral -- 3.16.3 Summary -- 3.16.4 Star‐Star with Isolated Neutral -- 3.17 Disadvantages of Harmonics in Transformer -- 3.17.1 Effect of Harmonic Currents -- 3.17.2 Electromagnetic Interference -- 3.17.3 Effect of Harmonic Voltages -- 3.17.4 Summary -- 3.17.5 Oscillating Neutral Phenomena -- 3.18 Open Circuit and Short‐Circuit Conditions in a Three‐Phase Transformer -- 3.19 Matlab/Simulink Model of a Single‐Phase Transformer -- 3.20 Matlab/Simulink Model of Testing of Transformer -- 3.21 Matlab/Simulink Model of Autotransformer -- 3.22 Matlab/Simulink Model of Three‐Phase Transformer -- 3.23 Supplementary Solved Problems -- 3.24 Summary -- 3.25 Problems -- References -- Chapter 4 Fundamentals of Rotating Electrical Machines and Machine Windings -- 4.1 Preliminary Remarks -- 4.2 Generator Principle -- 4.2.1 Simple Loop Generator -- 4.2.2 Action of Commutator -- 4.2.3 Force on a Conductor -- 4.2.3.1 DC Motor Principle -- 4.2.3.2 Motor Action -- 4.3 Machine Windings.
4.3.1 Coil Construction -- 4.3.1.1 Coil Construction: Distributed Winding -- 4.3.1.2 Coil Construction: Concentrated Winding -- 4.3.1.3 Coil Construction: Conductor Bar -- 4.3.2 Revolving (Rotor) Winding -- 4.3.3 Stationary (Stator) Winding -- 4.3.4 DC Armature Windings -- 4.3.4.1 Pole Pitch (Yp) -- 4.3.4.2 Coil Pitch or Coil Span (Ycs) -- 4.3.4.3 Back Pitch (Yb) -- 4.3.4.4 Front Pitch (Yf) -- 4.3.4.5 Resultant Pitch (Y) -- 4.3.4.6 Commutator Pitch (a) -- 4.3.5 Lap Winding -- 4.3.5.1 Lap Multiple or Parallel Windings -- 4.3.5.2 Formulas for Lap Winding -- 4.3.5.3 Multiplex, Single, Double, and Triple Windings -- 4.3.5.4 Meaning of the Term Re‐entrant -- 4.3.5.5 Multiplex Lap Windings -- 4.3.6 Wave Winding -- 4.3.6.1 Formulas for Wave Winding -- 4.3.6.2 Multiplex Wave or Series‐Parallel Winding -- 4.3.6.3 Formulas for Series‐Parallel Winding -- 4.3.7 Symmetrical Windings -- 4.3.7.1 Possible Symmetrical Windings for DC Machines of a Different Number of Poles -- 4.3.8 Equipotential Connectors (Equalizing Rings) -- 4.3.9 Applications of Lap and Wave Windings -- 4.3.10 Dummy or Idle Coils -- 4.3.10.1 Dummy Coils -- 4.3.11 Whole‐Coil Winding and Half‐Coil Winding -- 4.3.12 Concentrated Winding -- 4.3.13 Distributed Winding -- 4.4 Electromotive Force (emf) Equation -- 4.4.1 emf Equation of an Alternator -- 4.4.1.1 Winding Factor (Coil Pitch and Distributed Windings) -- 4.4.2 Winding Factors -- 4.4.2.1 Pitch Factor or Coil Pitch (Pitch Factor (Kp) or Coil Span Factor [Kc]) -- 4.4.3 Distribution Factor (Breadth Factor (Kb) or Distribution Factor (Kd)) -- 4.4.3.1 Distribution Factor (Kd) -- 4.5 Magnetomotive Force (mmf) of AC Windings -- 4.5.1 mmf and Flux in Rotating Machine -- 4.5.2 Main Air‐Gap Flux (Field Flux) -- 4.5.3 mmf of a Coil -- 4.5.3.1 mmf -- 4.5.3.2 mmf of Distributed Windings -- 4.5.3.3 mmf Space Wave of a Single Coil.
4.5.3.4 mmf Space Wave of One Phase of a Distributed Winding -- 4.6 Harmonic Effect -- 4.6.1 The Form Factor and the emf per Conductor -- 4.6.2 The Wave Form -- 4.6.3 Problem Due to Harmonics -- 4.6.4 Elimination or Suppression of Harmonics -- 4.6.4.1 Shape of Pole Face -- 4.6.4.2 Use of Several Slots per Phase per Pole -- 4.6.4.3 Use of Short‐Pitch Windings -- 4.6.4.4 Effect of the Y‐ and Δ ‐Connection on Harmonics -- 4.6.4.5 Harmonics Produced by Armature Slots -- 4.7 Basic Principles of Electric Machines -- 4.7.1 AC Rotating Machines -- 4.7.1.1 The Rotating Magnetic Field -- 4.7.1.2 The Relationship between Electrical Frequency and the Speed of Magnetic Field Rotation -- 4.7.1.3 Reversing the Direction of the Magnetic Field Rotation -- 4.7.1.4 The Induced Voltage in AC Machines -- 4.7.1.5 The Induced Voltage in a Coil on a Two‐Pole Stator -- 4.7.1.6 The Induced Voltage in a Three‐Phase Set of Coils -- 4.7.1.7 The rms Voltage in a Three‐Phase Stator -- 4.7.2 The Induced Torque in an AC Machine -- 4.8 Summary -- Problems -- References -- Chapter 5 DC Machines -- 5.1 Preliminary Remarks -- 5.2 Construction and Types of DC Generator -- 5.2.1 Construction of DC Machine -- 5.2.2 Types of DC Generator -- 5.3 Principle of Operation of DC Generator -- 5.3.1 Voltage Build‐Up in a DC Generator -- 5.3.2 Function of Commutator -- 5.4 Commutation Problem and Solution -- 5.4.1 Brush Shifting -- 5.4.2 Commutating Poles -- 5.4.3 Compensating Windings -- 5.5 Types of Windings -- 5.6 emf Equations in a DC Generator -- 5.7 Brush Placement in a DC Machine -- 5.8 Equivalent Circuit of DC Generator -- 5.9 Losses of DC Generator -- 5.10 Armature Reaction -- 5.10.1 No‐Load Operation -- 5.10.2 Loaded Operation -- 5.11 Principle of Operation of a DC Motor -- 5.11.1 Equivalent Circuit of a DC Motor -- 5.12 emf and Torque Equations of DC Motor -- 5.13 Types of DC Motor.
5.13.1 Separately Excited DC Motor.
Sommario/riassunto: "The book will focus on the basic understanding of the concept of electrical machines (working principles, equivalent circuit, and analysis) and will provide the simulation models of every type of machine described in the book. The book will elaborate on the fundamental concepts of electrical machines along with several numerical problems and simulation models using Matlab/Simulink."--
Titolo autorizzato: Electrical machine fundamentals with numerical simulation using MATLAB  Visualizza cluster
ISBN: 1-119-68266-5
1-119-68265-7
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910677021103321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui