Vai al contenuto principale della pagina
Autore: |
Carmicino Carmine
![]() |
Titolo: |
Advances in Hybrid Rocket Technology and Related Analysis Methodologies
![]() |
Pubblicazione: | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020 |
Descrizione fisica: | 1 electronic resource (352 p.) |
Soggetto topico: | History of engineering & technology |
Soggetto non controllato: | hybrid rocket |
marine propulsion | |
rupture disc | |
idling operation | |
underwater environment | |
hybrid rocket engines | |
multidisciplinary design optimization | |
robust optimization | |
electric feed system | |
ballistic reconstruction technique | |
fuel regression | |
nozzle erosion | |
c∗ efficiency | |
hybrid | |
regression rate | |
self-disintegration | |
HTPB | |
paraffin | |
low-energy polymer | |
magnesium | |
fuel regression rate | |
internal ballistics | |
computational fluid dynamics | |
hybrid rocket propulsion | |
swirl oxidizer injection | |
feedback loop control | |
error propagation analysis | |
resistor-based sensors | |
rocket | |
regression | |
Marxman | |
diffusion-limited | |
blowing factor | |
3D printing | |
fuel grain | |
hybrid combustion | |
modeling and simulation | |
hybrid propulsion | |
paraffin-based fuel | |
oxygen | |
combustion | |
testing | |
nano-sized aluminum | |
micron-sized aluminum | |
fluoropolymer | |
mechanically activated aluminum | |
coated aluminum | |
fuel-rich composite powder | |
aluminum aggregation | |
aluminum agglomeration | |
mass burning rate | |
"green" propellants | |
nitrous oxide decomposition | |
energy of activation | |
3-D printing | |
hybrid rocket engine | |
sounding rocket | |
carbon fiber composite | |
engine test | |
total impulse | |
lightweight design | |
ignition system | |
gas torch | |
methane-oxygen combustion | |
vortex combustion chamber | |
hybrid rocket motor | |
ramjet motor | |
Persona (resp. second.): | CarmicinoCarmine |
Sommario/riassunto: | The book is an amazing collection of technical papers dealing with hybrid rockets. Once perceived as a niche technology, for about a decade, hybrid rockets have enjoyed renewed interest from both the propulsion technical community and industry. Hybrid motors can be used in practically all applications where a rocket is employed, but there are certain cases where they present a superior fit, such as sounding rockets, tactical missile systems, launch boosters and the emerging field of commercial space transportation. The novel space tourism business, indeed, will benefit from their safety and lower recurrent development costs. The subjects addressed in the book include the cutting edge technology employed to push forward this relatively new propulsion concept, spanning systems to improve fuel regression rate, control of the mixture ratio to optimize performance, computational fluid dynamics applied to the simulation of the internal ballistics, and some other novel system applications. |
Titolo autorizzato: | Advances in Hybrid Rocket Technology and Related Analysis Methodologies ![]() |
Formato: | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910557799403321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |