Vai al contenuto principale della pagina

Biomass valorization : sustainable methods for the production of chemicals / / edited by Davide Ravelli and Chiara Samori



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Biomass valorization : sustainable methods for the production of chemicals / / edited by Davide Ravelli and Chiara Samori Visualizza cluster
Pubblicazione: Weinheim, Germany : , : Wiley-VCH, , [2021]
©2021
Descrizione fisica: 1 online resource (434 pages)
Disciplina: 662.88
Soggetto topico: Biomass chemicals
Soggetto genere / forma: Electronic books.
Persona (resp. second.): RavelliDavide <1984->
SamoriChiara
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Cover -- Title Page -- Copyright -- Contents -- Foreword -- Preface -- Chapter 1 Role of Biomass in the Production of Chemicals -- 1.1 Introduction -- 1.2 Biomass Valorization -- 1.3 Lignocellulosic Biomass -- 1.4 Key Biomolecules -- 1.5 Solvents -- 1.6 Pretreatment of Lignocelluloses -- 1.7 Conclusions and Perspectives -- References -- Section I Catalytic Strategies -- Chapter 2 Biomass Processing via Acid Catalysis -- 2.1 Introduction -- 2.1.1 Is an Acid the Best Catalyst? -- 2.2 Acid‐Catalyzed Processing of Cellulosic Polysaccharides -- 2.3 Acid‐Catalyzed Processing of Lignin -- 2.4 Conclusions and Perspectives -- References -- Chapter 3 Biomass Processing via Base Catalysis -- 3.1 Introduction -- 3.2 Aldol Condensation -- 3.2.1 Aldol Condensation of Furanic Aldehydes -- 3.2.2 Self‐Aldol Condensation of Acetone -- 3.2.3 Aldol Condensation Between Alcohols: Guerbet Coupling Reaction -- 3.3 Ketonization Reaction of Carboxylic Acids -- 3.4 Transesterification Reaction -- 3.4.1 Biodiesel Production -- 3.4.2 High Value‐Added Chemicals from Transesterification Reactions -- 3.5 Conclusions and Perspectives -- References -- Chapter 4 Biomass Processing via Metal Catalysis -- 4.1 Introduction -- 4.2 Synthetic Strategies for Supported Metal Nanoparticles -- 4.2.1 Impregnation -- 4.2.2 Precipitation -- 4.2.3 Sol Immobilization -- 4.3 Furfural -- 4.3.1 Furfural Hydrogenation -- 4.3.1.1 Furfural to Furfuryl Alcohol -- 4.3.1.2 Furfural to Tetrahydrofurfuryl Alcohol -- 4.3.1.3 Furfural to Pentanediols -- 4.3.1.4 Furfural to 2‐Methylfuran -- 4.3.2 Furfural Oxidation -- 4.3.2.1 Furfural to Furoates -- 4.4 5‐Hydroxymethylfurfural (HMF) -- 4.4.1 HMF Hydrogenation -- 4.4.1.1 HMF to 2,5‐Dimethylfuran (DMF) -- 4.4.1.2 HMF to 2,5‐Dihydroxymethyltetrahydrofuran (DHMTHF) -- 4.4.2 HMF Oxidation.
4.4.2.1 HMF to 2,5‐Furandicarboxylic Acid (FDCA) Using Monometallic Systems -- 4.4.2.2 HMF Oxidation over Bimetallic Catalysts -- 4.5 Conclusions and Perspectives -- References -- Chapter 5 Biomass Processing with Biocatalysis -- 5.1 Introduction -- 5.2 Generations of Renewable Biomass: Advantages and Limitations -- 5.3 Advantages and Limitations of Biocatalysis -- 5.4 Enzyme Discovery and Optimization of Enzyme Performance -- 5.5 Enzyme Immobilization -- 5.5.1 Enzyme Immobilization by Cross‐linking Enzyme Molecules -- 5.5.2 Advantages and Limitations of Cross‐Linked Enzyme Aggregates (CLEAs) -- 5.5.3 Magnetically Separable Immobilized Enzymes -- 5.6 Enzymatic Hydrolysis of Starch to Glucose -- 5.7 Enzymatic Depolymerization of Lignocellulose -- 5.8 Enzymatic Hydrolysis of Cellulose and Hemicellulose -- 5.8.1 Magnetizable Immobilized Enzymes in Lignocellulose Conversion -- 5.9 Enzymatic Hydrolysis of 3rd Generation (3G) Polysaccharides -- 5.10 Commodity Chemicals from Carbohydrates (Monosaccharides) -- 5.10.1 Fermentative Production of Commodity Chemicals -- 5.10.2 Deoxygenation via Dehydration of Carbohydrates to Furan Derivatives -- 5.10.3 Polyethylene Furandicarboxylate (PEF) as a Renewable Alternative to PET -- 5.10.4 Enzymatic Synthesis of Bio‐based Polyesters -- 5.11 Enzymatic Conversions of Triglycerides: Production of Biodiesel and Bulk Chemicals -- 5.12 Conclusions and Perspectives -- References -- Section II Thermal Strategies -- Chapter 6 Biomass Processing via Pyrolysis -- 6.1 Brief Introduction -- 6.2 Chemicals from Cellulose Pyrolysis -- 6.2.1 General Aspects -- 6.2.2 Levoglucosan -- 6.2.3 Levoglucosenone -- 6.2.4 LAC, (1R,5S)‐1‐Hydroxy‐3,6‐Dioxabicydioxabicyclo‐[3.2.1]octan‐2‐one -- 6.3 Chemicals from Lignin Pyrolysis -- 6.4 Pyrolysis of Biomass -- 6.4.1 Levoglucosan -- 6.4.1.1 Effects of Metal Oxides.
6.4.1.2 Effects of Alkali and Alkaline Earth Metals -- 6.4.1.3 Effects of Acid Impregnation -- 6.4.1.4 Effects of Other Components -- 6.4.2 Levoglucosenone -- 6.4.2.1 Effects of Metal Chlorides -- 6.4.2.2 Effects of Acid Catalysts -- 6.4.2.3 Others -- 6.4.3 Furfural -- 6.4.4 Aromatic Hydrocarbons -- 6.4.5 Phenolic Compounds -- 6.5 Conclusions and Perspectives -- References -- Chapter 7 Biomass Processing via Thermochemical-Biological Hybrid Processes -- 7.1 Introduction -- 7.1.1 Hybrid Thermochemical/Biological Processing with Single‐Strain Microorganisms -- 7.1.2 Hybrid Thermochemical/Biological Processing with Microbial Mixed Consortia (MMC) -- 7.2 Pyrolysis Products (PyP) from the Microorganism's Standpoint -- 7.2.1 What Pyrolysis Can Do for Microorganisms: Yields and Bioavailability of PyP -- 7.2.2 Viable Pathways According to Thermodynamics Laws -- 7.2.3 Rate of MMC Biological Conversions in Relationship with PyP Treatment -- 7.2.4 Toxicity of PyP Toward MMC -- 7.3 Conversion of PyP with MMC: Survey of Experimental Evidence -- 7.3.1 Syngas Conversion to Methane -- 7.3.2 Syngas Conversion to H2, Volatile Fatty Acids (VFA), and Alcohols -- 7.3.3 Conversion of Condensable PyP to Methane -- 7.3.4 Conversion of Condensable PyP to VFA and Other Intermediates -- 7.4 Feasible Pathways for Producing Chemicals from PyP with MMC -- 7.4.1 Hybrid Pyrolysis Fermentation and Extraction of Mixed VFA/Alcohols -- 7.4.2 Alkaline Fermentation of Pyrolysis Products to VFA Salts, Ketonization, and Hydrogenation to C3-C6 Mixed Alcohols -- 7.4.3 Alkaline Fermentation of Pyrolysis Products to VFA Salts and Polyhydroxyalkanoates (PHA) Production via Aerobic MMC -- 7.4.4 Direct Alcohol Production by Means of Fermentation of PyP under High Hydrogen Pressure -- 7.5 Conclusions and Perspectives -- References -- Section III Advanced/Unconventional Strategies.
Chapter 8 Biomass Processing via Electrochemical Means -- 8.1 Introduction -- 8.2 Electrochemical Conversion of Bio‐Based Molecules -- 8.3 Conversion of Sugars -- 8.4 Conversion of Furanics -- 8.4.1 5‐(Hydroxymethyl)furfural (5‐HMF) -- 8.4.1.1 5‐HMF Oxidation -- 8.4.1.2 5‐HMF Reduction -- 8.4.2 Furfural -- 8.5 Conversion of Levulinic Acid -- 8.6 Conversion of Glycerol -- 8.7 Lignin Depolymerization -- 8.8 Scale‐up of Electrosynthesis of Biomass‐Derived Chemicals -- 8.9 Conclusions and Perspectives -- References -- Chapter 9 Biomass Processing via Photochemical Means -- 9.1 Introduction -- 9.2 Fundamental Aspects of Photoredox Catalysis -- 9.3 Photochemical Valorization of Lignin -- 9.3.1 Strategies for Cα Cβ Bond Cleavage -- 9.3.2 Strategies for Lignin Oxidation and Cβ O Bond Cleavage -- 9.3.3 Strategies for Ar O Bond Cleavage -- 9.4 Conclusions and Perspectives -- References -- Chapter 10 Biomass Processing via Microwave Treatment -- 10.1 Introduction -- 10.2 Microwave-Matter Interaction: Advantages and Limitations in the Processing of Biomass -- 10.3 Microwave Pyrolysis -- 10.4 Microwave‐assisted Hydrolysis -- 10.5 Microwave‐assisted Extraction of Phytochemical Compounds -- 10.6 Conclusions and Perspectives -- References -- Chapter 11 Biomass Processing Assisted by Ultrasound -- 11.1 Introduction -- 11.2 Ultrasound Background -- 11.3 Ultrasound‐Assisted Biomass Pretreatments -- 11.4 Ultrasound‐Assisted Biomass Conversion -- 11.4.1 Thermochemical Conversion Assisted by Ultrasound -- 11.4.2 Biochemical Conversion Assisted by Ultrasound -- 11.4.3 Chemical Conversion (Synthesis) Assisted by Ultrasound -- 11.5 Ultrasound‐Assisted Extraction of Value‐Added Compounds -- 11.5.1 Ultrasound Contribution to Biomass Extraction Processes -- 11.5.2 Uses of Alternative Approaches for Biomass Extractions Assisted by Ultrasound -- 11.6 Alternative Solvents.
11.7 Conclusions and Perspectives -- References -- Chapter 12 Biomass Processing via Mechanochemical Means -- 12.1 Overview and Introduction -- 12.1.1 Background to the Method -- 12.1.2 Properties of a Typical Laboratory Mixer/Mill -- 12.2 Crystallinity Reduction in Biopolymers via Mechanochemistry -- 12.3 Mechanochemical Transformations of Polysaccharides -- 12.3.1 Cellulose Depolymerization -- 12.3.2 Cellulose Modification Toward Composite Materials -- 12.3.3 Transformations of Chitin -- 12.4 Mechanochemical Transformations of Amino Acids, Nucleotides, and Related Materials -- 12.5 Mechanochemical Treatment of Lignin -- 12.6 Biominerals from Mechanochemical Processing of Biomass -- 12.7 Conclusions and Perspectives -- References -- Section IV Closing Remarks -- Chapter 13 Industrial Perspectives of Biomass Processing -- 13.1 Replacing Existing Petrochemicals with Alternatives from Biomass: An Introduction -- 13.2 Oleochemical Biorefinery: A Consolidated and Multifaceted Example of Biomass Processing -- 13.2.1 Biofuels and Coproduced Chemicals from Oils and Fats -- 13.2.2 Skeletal Isomerization of Unsaturated Fatty Acids for Isostearic Acid Production -- 13.2.3 Bio‐based Synthesis of Azelaic and Pelargonic Acids: A Renewable Route Toward Bio‐based Polyesters and Cosmetics -- 13.3 From Sugar to Bio‐monomers: The Case of 2,5‐Furandicarboxylic Acid (FDCA) -- 13.4 From Bioethanol to Rubber: The Synthesis of Bio‐butadiene -- 13.5 Conclusions and Perspectives -- References -- Index -- EULA.
Titolo autorizzato: Biomass valorization  Visualizza cluster
ISBN: 3-527-82503-7
3-527-82502-9
3-527-82501-0
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910554873503321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui