Vai al contenuto principale della pagina

Homotopy equivalences of 3-manifolds and deformation theory of Kleinian groups / / Richard D. Canary, Darryl McCullough



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Canary Richard Douglas Visualizza persona
Titolo: Homotopy equivalences of 3-manifolds and deformation theory of Kleinian groups / / Richard D. Canary, Darryl McCullough Visualizza cluster
Pubblicazione: Providence, Rhode Island : , : American Mathematical Society, , 2004
©2004
Descrizione fisica: 1 online resource (238 p.)
Disciplina: 514/.3
Soggetto topico: Three-manifolds (Topology)
Homotopy equivalences
Low-dimensional topology
Kleinian groups
Soggetto genere / forma: Electronic books.
Persona (resp. second.): McCulloughDarryl <1951->
Note generali: "Volume 172, Number 812 (first of 4 numbers)."
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: ""Contents""; ""Preface""; ""Chapter 1. Introduction""; ""1.1. Motivation""; ""1.2. The main theorems for Haken 3-manifolds""; ""1.3. The main theorems for reducible 3-manifolds""; ""1.4. Examples""; ""Chapter 2. Johannson's Characteristic Submanifold Theory""; ""2.1. Fibered 3-manifolds""; ""2.2. Boundary patterns""; ""2.3. Admissible maps and mapping class groups""; ""2.4. Essential maps and useful boundary patterns""; ""2.5. The classical theorems""; ""2.6. Exceptional fibered 3-manifolds""; ""2.7. Vertical and horizontal surfaces and maps""; ""2.8. Fiber-preserving maps""
""2.9. The characteristic submanifold""""2.10. Examples of characteristic submanifolds""; ""2.11. The Classification Theorem""; ""2.12. Miscellaneous topological results""; ""Chapter 3. Relative Compression Bodies and Cores""; ""3.1. Relative compression bodies""; ""3.2. Minimally imbedded relative compression bodies""; ""3.3. The maximal incompressible core""; ""3.4. Normally imbedded relative compression bodies""; ""3.5. The normal core and the useful core""; ""Chapter 4. Homotopy Types""; ""4.1. Homotopy equivalences preserve usefulness""; ""4.2. Finiteness of homotopy types""
""Chapter 5. Pared 3-Manifolds""""5.1. Definitions and basic properties""; ""5.2. The topology of pared manifolds""; ""5.3. The characteristic submanifold of a pared manifold""; ""Chapter 6. Small 3-Manifolds""; ""6.1. Small manifolds and small pared manifolds""; ""6.2. Small pared homotopy types""; ""Chapter 7. Geometrically Finite Hyperbolic 3-Manifolds""; ""7.1. Basic definitions""; ""7.2. Quasiconformal deformation theory: a review""; ""7.3. The Parameterization Theorem""; ""Chapter 8. Statements of Main Theorems""; ""8.1. Statements of Main Topological Theorems""
""8.2. Statements of Main Hyperbolic Theorem and Corollary""""8.3. Derivation of hyperbolic results""; ""Chapter 9. The Case When There Is a Compressible Free Side""; ""9.1. Algebraic lemmas""; ""9.2. The finite-index cases""; ""9.3. The infinite-index cases""; ""Chapter 10. The Case When the Boundary Pattern Is Useful""; ""10.1. The homomorphism Î?""; ""10.2. Realizing homotopy equivalences of I-bundles""; ""10.3. Realizing homotopy equivalences of Seifert-fibered manifolds""; ""10.4. Proof of Main Topological Theorem 2""; ""Chapter 11. Dehn Flips""
""Chapter 12. Finite Index Realization For Reducible 3-Manifolds""""12.1. Homeomorphisms of connected sums""; ""12.2. Reducible 3-manifolds with compressible boundary""; ""12.3. Reducible 3-manifolds with incompressible boundary""; ""Chapter 13. Epilogue""; ""13.1. More topology""; ""13.2. More geometry""; ""Bibliography""; ""Index""; ""A""; ""B""; ""C""; ""D""; ""E""; ""F""; ""G""; ""H""; ""I""; ""J""; ""K""; ""L""; ""M""; ""N""; ""O""; ""P""; ""Q""; ""R""; ""S""; ""T""; ""U""; ""V""; ""W""
Titolo autorizzato: Homotopy equivalences of 3-manifolds and deformation theory of Kleinian groups  Visualizza cluster
ISBN: 1-4704-0413-3
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910480533403321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Memoirs of the American Mathematical Society ; ; Volume 172, Number 812.