Vai al contenuto principale della pagina
Titolo: | Homotopy invariant algebraic structures : a conference in honor of J. Michael Boardman : AMS Special Session on Homotopy Theory, January 7-10, 1998, Baltimore, MD / / Jean-Pierre Meyer, Jack Morava, W. Stephen Wilson, editors |
Pubblicazione: | Providence, Rhode Island : , : American Mathematical Society, , [1999] |
©1999 | |
Descrizione fisica: | 1 online resource (392 p.) |
Disciplina: | 514/.24 |
Soggetto topico: | Homotopy theory |
Soggetto genere / forma: | Electronic books. |
Persona (resp. second.): | BoardmanJ. M (John Michael) |
MeyerJean-Pierre <1929-> | |
MoravaJack <1944-> | |
WilsonW. Stephen <1946-> | |
Note generali: | Description based upon print version of record. |
Nota di bibliografia: | Includes bibliographical references. |
Nota di contenuto: | ""Contents""; ""Preface""; ""Publications of J. Michael Boardman""; ""Some History""; ""Letter from R. Thorn""; ""Higher homotopies, Pacts, and the bar construction""; ""The hare and the tortoise""; ""Cobordism of involutions revisited, revisited""; ""Grafting Boardman's cherry trees to quantum field theory""; ""My time as Mike Boardman's student and our work on infinite loop spaces""; ""Research Papers""; ""Stabilizing the lower operations for mod two cohomology""; ""Conditionally convergent spectral sequences""; ""Introduction""; ""Part I � Tools""; ""Part II � Convergence"" |
""Formal schemes and formal groups""""1. Introduction""; ""2. Schemes""; ""3. Non-affine schemes""; ""4. Formal schemes""; ""5. Formal curves""; ""6. Formal groups""; ""7. Ordinary formal groups""; ""8. Formal schemes in algebraic topology""; ""References""; ""Simplicial commutative Fp-algebras through the looking-glass of the Fp-local spaces""; ""The swiss-cheese operad""; ""K(n + 1) equivalence implies K(n) equivalence"" | |
Titolo autorizzato: | Homotopy invariant algebraic structures |
ISBN: | 0-8218-7829-8 |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910480085203321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |