Vai al contenuto principale della pagina

Nonlinear diffusion equations [[electronic resource] /] / Zhuoqun Wu, Junning Zhao and Jingxue Yin, Huilai Li



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Nonlinear diffusion equations [[electronic resource] /] / Zhuoqun Wu, Junning Zhao and Jingxue Yin, Huilai Li Visualizza cluster
Pubblicazione: River Edge, N.J., : World Scientific, c2001
Descrizione fisica: 1 online resource (xvii, 502 p.)
Disciplina: 515/.352
Soggetto topico: Burgers equation
Heat equation
Soggetto genere / forma: Electronic books.
Altri autori: WuZhuoqun  
Note generali: "The first edition of this book published in 1996 was written in Chinese. The present edition is basically an English translation of the first edition"--P. xi.
Nota di bibliografia: Includes bibliographical references (pp479-502).
Nota di contenuto: ch. 1. Newtonian filtration equations. 1.1. Introduction. 1.2. Existence and uniqueness of solutions: One dimensional case. 1.3. Existence and uniqueness of solutions: Higher dimensional case. 1.4. Regularity of solutions: One Dimensional case. 1.5. Regularity of solutions: Higher dimensional case. 1.6. Properties of the free boundary: One dimensional case. 1.7. Properties of the free boundary: Higher dimensional case. 1.8. Initial trace of solutions. 1.9. Other problems -- ch. 2. Non-Newtonian filtration equations. 2.1. Introduction. Preliminary knowledge. 2.2. Existence of solutions. 2.3. Harnack inequality and the initial trace of solutions. 2.4. Regularity of solutions. 2.5. Uniqueness of solutions. 2.6. Properties of the free boundary. 2.7. Other problems -- ch. 3. General quasilinear equations of second order. 3.1. Introduction. 3.2. Weakly degenerate equations in one dimension. 3.3. Weakly Degenerate equations in higher dimension. 3.4. Strongly degenerate equations in one dimension. 3.5. Degenerate equations in higher dimension without terms of lower order. 3.6. General strongly degenerate equations in higher dimension -- ch. 4. Nonlinear diffusion equations of higher order. 4.1. Introduction. 4.2. Similarity solutions of a fourth order equation. 4.3. Equations with double-degeneracy. 4.4. Cahn-Hilliard equation with constant mobility. 4.5. Cahn-Hilliard equations with positive concentration dependent mobility. 4.6. Thin film equation. 4.7. Cahn-Hilliard equation with degenerate mobility.
Sommario/riassunto: Nonlinear diffusion equations, an important class of parabolic equations, come from a variety of diffusion phenomena which appear widely in nature. They are suggested as mathematical models of physical problems in many fields, such as filtration, phase transition, biochemistry and dynamics of biological groups. In many cases, the equations possess degeneracy or singularity. The appearance of degeneracy or singularity makes the study more involved and challenging. Many new ideas and methods have been developed to overcome the special difficulties caused by the degeneracy and singularity, which enrich the theory of partial differential equations. This book provides a comprehensive presentation of the basic problems, main results and typical methods for nonlinear diffusion equations with degeneracy. Some results for equations with singularity are touched upon.
Titolo autorizzato: Nonlinear diffusion equations  Visualizza cluster
ISBN: 1-281-95135-8
9786611951351
981-279-979-6
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910454363903321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui