Vai al contenuto principale della pagina

Graph embedding for pattern analysis / / Yun Fu, Yunqian Ma, editors



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Graph embedding for pattern analysis / / Yun Fu, Yunqian Ma, editors Visualizza cluster
Pubblicazione: New York, : Springer, c2013
Edizione: 1st ed. 2013.
Descrizione fisica: 1 online resource (263 p.)
Disciplina: 006.3
Soggetto topico: Pattern recognition systems
Graph theory
Altri autori: FuYun  
MaYunqian  
Note generali: Description based upon print version of record.
Nota di bibliografia: Includes bibliographical references.
Nota di contenuto: Multilevel Analysis of Attributed Graphs for Explicit Graph Embedding in Vector Spaces -- Feature Grouping and Selection over an Undirected Graph -- Median Graph Computation by Means of Graph Embedding into Vector Spaces -- Patch Alignment for Graph Embedding -- Feature Subspace Transformations for Enhancing K-Means Clustering -- Learning with â„“1-Graph for High Dimensional Data Analysis -- Graph-Embedding Discriminant Analysis on Riemannian Manifolds for Visual Recognition -- A Flexible and Effective Linearization Method for Subspace Learning -- A Multi-Graph Spectral Approach for Mining Multi-Source Anomalies -- Graph Embedding for Speaker Recognition.
Sommario/riassunto: Graph Embedding for Pattern Analysis covers theory methods, computation, and applications widely used in statistics, machine learning, image processing, and computer vision. This book presents the latest advances in graph embedding theories, such as nonlinear manifold graph, linearization method, graph based subspace analysis, L1 graph, hypergraph, undirected graph, and graph in vector spaces. Real-world applications of these theories are spanned broadly in dimensionality reduction, subspace learning, manifold learning, clustering, classification, and feature selection. A selective group of experts contribute to different chapters of this book which provides a comprehensive perspective of this field.
Titolo autorizzato: Graph embedding for pattern analysis  Visualizza cluster
ISBN: 1-283-91069-1
1-4614-4457-8
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910437903303321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui