Vai al contenuto principale della pagina
Titolo: | Statistical Atlases and Computational Models of the Heart. ACDC and MMWHS Challenges : 8th International Workshop, STACOM 2017, Held in Conjunction with MICCAI 2017, Quebec City, Canada, September 10-14, 2017, Revised Selected Papers / / edited by Mihaela Pop, Maxime Sermesant, Pierre-Marc Jodoin, Alain Lalande, Xiahai Zhuang, Guang Yang, Alistair Young, Olivier Bernard |
Pubblicazione: | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 |
Edizione: | 1st ed. 2018. |
Descrizione fisica: | 1 online resource (XIII, 260 p. 94 illus.) |
Disciplina: | 611.12 |
Soggetto topico: | Optical data processing |
Artificial intelligence | |
Image Processing and Computer Vision | |
Artificial Intelligence | |
Persona (resp. second.): | PopMihaela |
SermesantMaxime | |
JodoinPierre-Marc | |
LalandeAlain | |
ZhuangXiahai | |
YangGuang | |
YoungAlistair | |
BernardOlivier | |
Note generali: | Includes index. |
Nota di contenuto: | Intro -- Preface -- Organization -- Contents -- Regular Papers -- Multiview Machine Learning Using an Atlas of Cardiac Cycle Motion -- 1 Introduction -- 2 Materials -- 3 Methods -- 3.1 Motion Atlas Formation -- 3.2 Multiview Classification -- 4 Experiments and Results -- 5 Discussion -- References -- Joint Myocardial Registration and Segmentation of Cardiac BOLD MRI -- 1 Introduction -- 2 Background -- 3 Methods -- 3.1 Dictionary Learning Based Image Segmentation -- 3.2 Graph-Based Joint Optimization -- 3.3 Dictionary Update -- 4 Experimental Results -- 4.1 Data Preparation and Implementation Details -- 4.2 Visual Evaluation -- 4.3 Quantitative Comparison -- 4.4 CAP Dataset -- 5 Conclusion -- References -- Transfer Learning for the Fully Automatic Segmentation of Left Ventricle Myocardium in Porcine Cardiac Cine MR Images -- Abstract -- 1 Introduction -- 2 Method -- 2.1 Data Description -- 2.2 Image Preprocessing -- 2.3 CNN Architecture and Training Setup -- 2.4 Transfer Learning -- 3 Experiments and Results -- 4 Conclusion and Discussions -- References -- Left Atrial Appendage Neck Modeling for Closure Surgery -- 1 Introduction -- 2 LAA Segmentation -- 3 LAA Neck Modeling -- 3.1 Auto-Detection of the Ostium of the LAA -- 3.2 Establishment of the Standard Coordinate System Based on the Ostium Plane -- 3.3 Auto-Building of Circumscribed Cylindrical Model of LAA Neck -- 4 Experiments and Results -- 4.1 Dataset -- 4.2 Ground Truth -- 4.3 Evaluation -- 5 Conclusion -- References -- Detection of Substances in the Left Atrial Appendage by Spatiotemporal Motion Analysis Based on 4D-CT -- 1 Introduction -- 2 Method -- 2.1 Extraction of Optical Flow Fields of Adjacent Phase -- 2.2 The Tracking of Key Voxels in Whole Cardiac Cycle -- 2.3 Hierarchical Clustering of All Trajectory Curves. |
2.4 Time-Frequency Analysis of the Track Curve of Critical Lumps - to Realize the Stress and Strain Detection of Lumps -- 3 Experiment and Discussion -- 3.1 Dataset -- 3.2 Evaluation and Results -- 4 Conclusion -- References -- Estimation of Healthy and Fibrotic Tissue Distributions in DE-CMR Incorporating CINE-CMR in an EM Algorithm -- 1 Introduction -- 2 Methods -- 3 Experimental Results -- 4 Conclusions -- References -- Multilevel Non-parametric Groupwise Registration in Cardiac MRI: Application to Explanted Porcine Hearts -- 1 Introduction -- 2 Methods -- 2.1 Data Acquisition -- 2.2 Pairwise Registration of the Anatomical MR Images -- 3 Groupwise Registration -- 4 Results -- 5 Future Work and Conclusions -- References -- ACDC Challenge -- GridNet with Automatic Shape Prior Registration for Automatic MRI Cardiac Segmentation -- 1 Introduction -- 2 Our Method -- 2.1 Shape Prior -- 2.2 Loss -- 2.3 Proposed Network -- 3 Experimental Setup and Results -- 3.1 Dataset, Evaluation Criteria, and Other Methods -- 3.2 Experimental Results -- 4 Conclusion -- References -- A Radiomics Approach to Computer-Aided Diagnosis with Cardiac Cine-MRI -- 1 Introduction -- 2 Method -- 2.1 Data Description -- 2.2 Semi-automatic Segmentation -- 2.3 Radiomics Features for Cardiac Diagnosis -- 2.4 Classification Method -- 2.5 Radiomic Feature Selection -- 3 Results -- 4 Conclusions -- References -- Fast Fully-Automatic Cardiac Segmentation in MRI Using MRF Model Optimization, Substructures Tracking and B-Spline Smoothing -- 1 Introduction -- 2 Automatic Localization of the Heart -- 3 Segmentation of an ED Phase Slice in Between Base and Mid-Ventricle -- 4 Segmentation Based on Tracking the Cardiac Substructures in ED Phase -- 5 Segmentation in the ES Phase -- 6 Left Ventricle Epicardial Boundary Smoothing -- 7 Global Results and First Conclusions -- References. | |
Automatic Segmentation and Disease Classification Using Cardiac Cine MR Images -- 1 Introduction -- 2 Data -- 3 Methods -- 3.1 Segmentation -- 3.2 Diagnosis -- 4 Experiments and Results -- 4.1 Segmentation Results -- 4.2 Diagnosis Results -- 5 Discussion and Conclusion -- References -- An Exploration of 2D and 3D Deep Learning Techniques for Cardiac MR Image Segmentation -- 1 Introduction -- 2 Method -- 2.1 Pre-Processing -- 2.2 Network Architectures -- 2.3 Optimisation -- 2.4 Post-Processing -- 3 Experiments and Results -- 3.1 Data -- 3.2 Evaluation Measures -- 3.3 Experiment 1: Comparison of Loss Functions -- 3.4 Experiment 2: Comparison of Network Architectures -- 3.5 Discussion and Conclusion -- References -- Automatic Cardiac Disease Assessment on cine-MRI via Time-Series Segmentation and Domain Specific Features -- 1 Introduction -- 2 Methods -- 2.1 Cardiac cine-MRI Dataset -- 2.2 Segmentation -- 2.3 Cardiac Disease Classification -- 3 Results -- 4 Discussion -- References -- 2D-3D Fully Convolutional Neural Networks for Cardiac MR Segmentation -- 1 Introduction -- 2 Method -- 2.1 Network Architecture -- 2.2 Dataset, Preprocessing and Augmentation -- 2.3 Training -- 2.4 Optimization Function -- 3 Results -- 4 Discussion -- 5 Conclusion -- References -- Densely Connected Fully Convolutional Network for Short-Axis Cardiac Cine MR Image Segmentation and Heart Diagnosis Using Random Forest -- 1 Introduction and Related Work -- 2 Our Method -- 2.1 Data Pre-processing Pipeline -- 2.2 Proposed Network Architecture: Densely Connected Fully Convolutional Network (DFCN) -- 2.3 Loss Function -- 2.4 Post-processing -- 2.5 Cardiac Disease Diagnosis -- 3 Experimental Setup and Results -- 3.1 Dataset and Evaluation Criteria -- 3.2 Experimental Results -- 3.3 Conclusion -- References. | |
Class-Balanced Deep Neural Network for Automatic Ventricular Structure Segmentation -- 1 Introduction -- 2 Methodology -- 2.1 Efficient Semantic Labeling with 3D FCN -- 2.2 Transfer Learning from C3D Model -- 2.3 Promote Training with Deep Supervision -- 2.4 Investigation of Class-Balanced Loss -- 3 Experimental Results -- 4 Conclusions -- References -- Automatic Segmentation of LV and RV in Cardiac MRI -- Abstract -- 1 Introduction -- 2 Methods -- 2.1 Dataset -- 2.2 Preprocessing -- 2.3 Architecture -- 3 Experimental Results -- 3.1 Implemented Details -- 3.2 Results and Quantitative Analysis with Other Methods -- 4 Conclusion and Discussion -- Acknowledgement -- References -- Automatic Multi-Atlas Segmentation of Myocardium with SVF-Net -- 1 Introduction -- 2 Rigid Alignment by Landmarks Detection -- 3 Non-rigid Diffeomorphic Registration with SVF-Net -- 4 Label Fusion Method -- 5 Results and Discussion -- 6 Conclusion -- References -- MM-WHS Challenge -- 3D Convolutional Networks for Fully Automatic Fine-Grained Whole Heart Partition -- 1 Introduction -- 2 Methodology -- 2.1 Dense Semantic Labeling with 3D FCN -- 2.2 Knowledge Transfer from C3D Model -- 2.3 Promote Training with Deep Supervision -- 2.4 Multi-class Balanced Loss Function -- 3 Experimental Results -- 4 Conclusions -- References -- Multi-label Whole Heart Segmentation Using CNNs and Anatomical Label Configurations -- 1 Introduction -- 2 Method -- 3 Experimental Setup -- 4 Results and Discussion -- 5 Conclusion -- References -- Multi-Planar Deep Segmentation Networks for Cardiac Substructures from MRI and CT -- 1 Introduction -- 2 Multi-Object Multi-Planar CNN (MO-MP-CNN) -- 3 Experimental Results -- 4 Discussion and Conclusion -- References -- Local Probabilistic Atlases and a Posteriori Correction for the Segmentation of Heart Images -- 1 Introduction -- 2 Methods. | |
2.1 Construction of the a Priori Information -- 2.2 Segmentation -- 2.3 A Posteriori Correction -- 3 Experiments -- 4 Results -- 5 Conclusion -- References -- Hybrid Loss Guided Convolutional Networks for Whole Heart Parsing -- 1 Introduction -- 2 Methodology -- 2.1 Intensity Calibration as Preprocessing -- 2.2 Enhance the Training of 3D FCN -- 2.3 Hybrid Loss Guided Class-Balanced Segmentation -- 3 Experimental Results -- 4 Conclusions -- References -- 3D Deeply-Supervised U-Net Based Whole Heart Segmentation -- 1 Introduction -- 2 Method -- 2.1 Data Pre-processing -- 2.2 Network Architecture -- 3 Experiments and Results -- 3.1 Data -- 3.2 Performance on Training Set -- 3.3 Performance on Testing Set -- 4 Discussion and Conclusion -- References -- MRI Whole Heart Segmentation Using Discrete Nonlinear Registration and Fast Non-local Fusion -- 1 Introduction and Related Work -- 2 Discrete Registration -- 3 Non-local Label Fusion -- 4 Multi-label Random Walk Regularisation -- 5 Discussion and Conclusion -- References -- Automatic Whole Heart Segmentation Using Deep Learning and Shape Context -- 1 Introduction -- 2 Methods -- 2.1 2.5D Segmentation Using Orthogonal U-Nets -- 2.2 Shape Context Generation -- 2.3 Shape-Context Guided U-Net -- 2.4 Implementation Details -- 3 Results -- 4 Discussion and Conclusion -- References -- Automatic Whole Heart Segmentation in CT Images Based on Multi-atlas Image Registration -- Abstract -- 1 Introduction -- 2 Methodology -- 2.1 A Three-Step Multi-atlas-Based Whole Heart Segmentation -- 2.2 Multiple Atlas Images -- 3 Experimental Results -- 4 Conclusion -- References -- Author Index. | |
Sommario/riassunto: | This book constitutes the thoroughly refereed post-workshop proceedings of the 8th International Workshop on Statistical Atlases and Computational Models of the Heart: ACDC and MMWHS Challenges 2017, held in conjunction with MICCAI 2017, in Quebec, Canada, in September 2017. The 27 revised full workshop papers were carefully reviewed and selected from 35 submissions. The papers cover a wide range of topics computational imaging and modelling of the heart, as well as statistical cardiac atlases. The topics of the workshop included: cardiac imaging and image processing, atlas construction, statistical modelling of cardiac function across different patient populations, cardiac computational physiology, model customization, atlas based functional analysis, ontological schemata for data and results, integrated functional and structural analyses, as well as the pre-clinical and clinical applicability of these methods. Besides regular contributing papers, additional efforts of STACOM workshop were also focused on two challenges: ACDC and MM-WHS. |
Titolo autorizzato: | Statistical Atlases and Computational Models of the Heart. ACDC and MMWHS Challenges |
ISBN: | 3-319-75541-2 |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910349458403321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |