Vai al contenuto principale della pagina

A Parametric Approach to Nonparametric Statistics / / by Mayer Alvo, Philip L. H. Yu



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Alvo Mayer Visualizza persona
Titolo: A Parametric Approach to Nonparametric Statistics / / by Mayer Alvo, Philip L. H. Yu Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Edizione: 1st ed. 2018.
Descrizione fisica: 1 online resource (XIV, 279 p. 15 illus. in color.)
Disciplina: 519.54
Soggetto topico: Probabilities
Statistics 
Probability Theory and Stochastic Processes
Statistical Theory and Methods
Persona (resp. second.): YuPhilip L. H
Nota di contenuto: I. Introduction and Fundamentals -- Introduction -- Fundamental Concepts in Parametric Inference -- II. Modern Nonparametric Statistical Methods -- Smooth Goodness of Fit Tests -- One-Sample and Two-Sample Problems -- Multi-Sample Problems -- Tests for Trend and Association -- Optimal Rank Tests -- Efficiency -- III. Selected Applications -- Multiple Change-Point Problems -- Bayesian Models for Ranking Data -- Analysis of Censored Data -- A. Description of Data Sets.
Sommario/riassunto: This book demonstrates that nonparametric statistics can be taught from a parametric point of view. As a result, one can exploit various parametric tools such as the use of the likelihood function, penalized likelihood and score functions to not only derive well-known tests but to also go beyond and make use of Bayesian methods to analyze ranking data. The book bridges the gap between parametric and nonparametric statistics and presents the best practices of the former while enjoying the robustness properties of the latter. This book can be used in a graduate course in nonparametrics, with parts being accessible to senior undergraduates. In addition, the book will be of wide interest to statisticians and researchers in applied fields.
Titolo autorizzato: A Parametric Approach to Nonparametric Statistics  Visualizza cluster
ISBN: 3-319-94153-4
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910300139903321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Springer Series in the Data Sciences, . 2365-5674