Vai al contenuto principale della pagina

Elliptic genera and vertex operator super-algebras / / Hirotaka Tamanoi



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Tamanoi Hirotaka <1958-> Visualizza persona
Titolo: Elliptic genera and vertex operator super-algebras / / Hirotaka Tamanoi Visualizza cluster
Pubblicazione: Berlin, Germany ; ; New York, New York : , : Springer-Verlag, , [1999]
©1999
Edizione: 1st ed. 1999.
Descrizione fisica: 1 online resource (VIII, 396 p.)
Disciplina: 512.55
Soggetto topico: Riemannian manifolds
Representations of algebras
Infinite dimensional Lie algebras
Note generali: Bibliographic Level Mode of Issuance: Monograph
Nota di contenuto: and summary of results -- Elliptic genera -- Vertex operator super algebras -- G-invariant vertex operator super subalgebras -- Geometric structure in vector spaces and reduction of structure groups on manifolds -- Infinite dimensional symmetries in elliptic genera for Kähler manifolds.
Sommario/riassunto: This monograph deals with two aspects of the theory of elliptic genus: its topological aspect involving elliptic functions, and its representation theoretic aspect involving vertex operator super-algebras. For the second aspect, elliptic genera are shown to have the structure of modules over certain vertex operator super-algebras. The vertex operators corresponding to parallel tensor fields on closed Riemannian Spin Kähler manifolds such as Riemannian tensors and Kähler forms are shown to give rise to Virasoro algebras and affine Lie algebras. This monograph is chiefly intended for topologists and it includes accounts on topics outside of topology such as vertex operator algebras.
Titolo autorizzato: Elliptic genera and vertex operator super-algebras  Visualizza cluster
ISBN: 3-540-48788-3
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 996466616403316
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Serie: Lecture Notes in Mathematics, . 0075-8434 ; ; 1704