Vai al contenuto principale della pagina

Consistency Problems for Heath-Jarrow-Morton Interest Rate Models [[electronic resource] /] / by Damir Filipovic



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Filipovic Damir Visualizza persona
Titolo: Consistency Problems for Heath-Jarrow-Morton Interest Rate Models [[electronic resource] /] / by Damir Filipovic Visualizza cluster
Pubblicazione: Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2001
Edizione: 1st ed. 2001.
Descrizione fisica: 1 online resource (X, 138 p.)
Disciplina: 332.82015118
Soggetto topico: Applied mathematics
Engineering mathematics
Finance
Economics, Mathematical 
Probabilities
Applications of Mathematics
Finance, general
Quantitative Finance
Probability Theory and Stochastic Processes
Classificazione: 91B28
60H15
Note generali: Bibliographic Level Mode of Issuance: Monograph
Nota di bibliografia: Includes bibliographical references (pages [129]-131) and index.
Nota di contenuto: Introduction -- Stochastic Equations in Infinite Dimension -- Consistent State Space Processes -- The HJM Methodology Revisited -- The Forward Curve Spaces H_w -- Invariant Manifolds for Stochastic Equations -- Consistent HJM Models -- Appendix: A Summary of Conditions.
Sommario/riassunto: The book is written for a reader with knowledge in mathematical finance (in particular interest rate theory) and elementary stochastic analysis, such as provided by Revuz and Yor (Continuous Martingales and Brownian Motion, Springer 1991). It gives a short introduction both to interest rate theory and to stochastic equations in infinite dimension. The main topic is the Heath-Jarrow-Morton (HJM) methodology for the modelling of interest rates. Experts in SDE in infinite dimension with interest in applications will find here the rigorous derivation of the popular "Musiela equation" (referred to in the book as HJMM equation). The convenient interpretation of the classical HJM set-up (with all the no-arbitrage considerations) within the semigroup framework of Da Prato and Zabczyk (Stochastic Equations in Infinite Dimensions) is provided. One of the principal objectives of the author is the characterization of finite-dimensional invariant manifolds, an issue that turns out to be vital for applications. Finally, general stochastic viability and invariance results, which can (and hopefully will) be applied directly to other fields, are described.
Titolo autorizzato: Consistency problems for Heath-Jarrow-Morton interest rate models  Visualizza cluster
ISBN: 3-540-44548-X
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 996466374803316
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Serie: Lecture Notes in Mathematics, . 0075-8434 ; ; 1760