Vai al contenuto principale della pagina

Subspace, Latent Structure and Feature Selection [[electronic resource] ] : Statistical and Optimization Perspectives Workshop, SLSFS 2005 Bohinj, Slovenia, February 23-25, 2005, Revised Selected Papers / / edited by Craig Saunders, Marko Grobelnik, Steve Gunn, John Shawe-Taylor



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Subspace, Latent Structure and Feature Selection [[electronic resource] ] : Statistical and Optimization Perspectives Workshop, SLSFS 2005 Bohinj, Slovenia, February 23-25, 2005, Revised Selected Papers / / edited by Craig Saunders, Marko Grobelnik, Steve Gunn, John Shawe-Taylor Visualizza cluster
Pubblicazione: Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2006
Edizione: 1st ed. 2006.
Descrizione fisica: 1 online resource (X, 209 p.)
Disciplina: 003/.1
Soggetto topico: Algorithms
Computer science—Mathematics
Mathematical statistics
Computer science
Artificial intelligence
Computer vision
Pattern recognition systems
Probability and Statistics in Computer Science
Theory of Computation
Artificial Intelligence
Computer Vision
Automated Pattern Recognition
Persona (resp. second.): SaundersCraig
GrobelnikMarko
GunnSteve
Shawe-TaylorJohn
Note generali: Bibliographic Level Mode of Issuance: Monograph
Nota di bibliografia: Includes bibliographical references and author index.
Nota di contenuto: Invited Contributions -- Discrete Component Analysis -- Overview and Recent Advances in Partial Least Squares -- Random Projection, Margins, Kernels, and Feature-Selection -- Some Aspects of Latent Structure Analysis -- Feature Selection for Dimensionality Reduction -- Contributed Papers -- Auxiliary Variational Information Maximization for Dimensionality Reduction -- Constructing Visual Models with a Latent Space Approach -- Is Feature Selection Still Necessary? -- Class-Specific Subspace Discriminant Analysis for High-Dimensional Data -- Incorporating Constraints and Prior Knowledge into Factorization Algorithms – An Application to 3D Recovery -- A Simple Feature Extraction for High Dimensional Image Representations -- Identifying Feature Relevance Using a Random Forest -- Generalization Bounds for Subspace Selection and Hyperbolic PCA -- Less Biased Measurement of Feature Selection Benefits.
Titolo autorizzato: Subspace, Latent Structure and Feature Selection  Visualizza cluster
ISBN: 3-540-34138-2
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 996465879603316
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Serie: Theoretical Computer Science and General Issues, . 2512-2029 ; ; 3940