Vai al contenuto principale della pagina

Knowledge Discovery in Inductive Databases [[electronic resource] ] : 5th International Workshop, KDID 2006 Berlin, Germany, September 18th, 2006 Revised Selected and Invited Papers / / edited by Saso Dzeroski, Jan Struyf



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Knowledge Discovery in Inductive Databases [[electronic resource] ] : 5th International Workshop, KDID 2006 Berlin, Germany, September 18th, 2006 Revised Selected and Invited Papers / / edited by Saso Dzeroski, Jan Struyf Visualizza cluster
Pubblicazione: Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2007
Edizione: 1st ed. 2007.
Descrizione fisica: 1 online resource (X, 301 p.)
Disciplina: 005.74
Soggetto topico: Data structures (Computer science)
Database management
Artificial intelligence
Data Structures and Information Theory
Database Management
Artificial Intelligence
Persona (resp. second.): DzeroskiSaso
StruyfJan
Note generali: Bibliographic Level Mode of Issuance: Monograph
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Invited Talk -- Value, Cost, and Sharing: Open Issues in Constrained Clustering -- Contributed Papers -- Mining Bi-sets in Numerical Data -- Extending the Soft Constraint Based Mining Paradigm -- On Interactive Pattern Mining from Relational Databases -- Analysis of Time Series Data with Predictive Clustering Trees -- Integrating Decision Tree Learning into Inductive Databases -- Using a Reinforced Concept Lattice to Incrementally Mine Association Rules from Closed Itemsets -- An Integrated Multi-task Inductive Database VINLEN: Initial Implementation and Early Results -- Beam Search Induction and Similarity Constraints for Predictive Clustering Trees -- Frequent Pattern Mining and Knowledge Indexing Based on Zero-Suppressed BDDs -- Extracting Trees of Quantitative Serial Episodes -- IQL: A Proposal for an Inductive Query Language -- Mining Correct Properties in Incomplete Databases -- Efficient Mining Under Rich Constraints Derived from Various Datasets -- Three Strategies for Concurrent Processing of Frequent Itemset Queries Using FP-Growth -- Discussion Paper -- Towards a General Framework for Data Mining.
Titolo autorizzato: Knowledge Discovery in Inductive Databases  Visualizza cluster
ISBN: 3-540-75549-7
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 996465624803316
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Serie: Information Systems and Applications, incl. Internet/Web, and HCI ; ; 4747