Vai al contenuto principale della pagina

Nanoscale Photonic Imaging [[electronic resource] /] / edited by Tim Salditt, Alexander Egner, D. Russell Luke



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Salditt Tim Visualizza persona
Titolo: Nanoscale Photonic Imaging [[electronic resource] /] / edited by Tim Salditt, Alexander Egner, D. Russell Luke Visualizza cluster
Pubblicazione: Springer Nature, 2020
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Edizione: 1st ed. 2020.
Descrizione fisica: 1 online resource (XXII, 634 p. 241 illus., 209 illus. in color.)
Disciplina: 621.36
Soggetto topico: Spectroscopy
Microscopy
Lasers
Photonics
Optical data processing
Nanoscale science
Nanoscience
Nanostructures
Materials science
Spectroscopy and Microscopy
Biological Microscopy
Optics, Lasers, Photonics, Optical Devices
Computer Imaging, Vision, Pattern Recognition and Graphics
Nanoscale Science and Technology
Characterization and Evaluation of Materials
Soggetto non controllato: Spectroscopy and Microscopy
Biological Microscopy
Optics, Lasers, Photonics, Optical Devices
Computer Imaging, Vision, Pattern Recognition and Graphics
Nanoscale Science and Technology
Characterization and Evaluation of Materials
Spectroscopy
Life Sciences
Laser
Nanophysics
Characterization and Analytical Technique
X-ray optics
X-ray imaging
Mathematical imaging
Sub-diffraction optical microscopy
Multidimensional microscopy
High resolution spectroscopy
Lensless imaging
Time dependent x-ray scattering
Inverse optical problems
Nano biophotonics
DFG funded OA book
Nanoscale optical imaging
Nanoscale biological imaging
Open Access
Spectrum analysis, spectrochemistry, mass spectrometry
Scientific equipment, experiments & techniques
Biology, life sciences
Optical physics
Applied optics
Computer vision
Nanotechnology
Testing of materials
Persona (resp. second.): SaldittTim
EgnerAlexander
LukeD. Russell
Nota di contenuto: Part I: Fundamentals and Tutorials -- Basic Knowledge in STED Nanoscopy (A. Egner, C. Geisler, and R. Siegmund) -- Basic Knowledge in Coherent X-ray Imaging (T. Salditt, A.-L. Robisch) -- Basic Knowledge: X-ray Focusing & Optics (T. Salditt and M. Osterhoff) -- Statistical Foundations of Nanoscale Photonic Imaging (A. Munk, T. Staudt, and F. Werner) -- Inverse Problems (T. Hohage, B. Sprung, and F. Weidling) -- Proximal Methods for Image Processing (D. R. Luke) -- Part II: Progress and Perspectives -- Quantifying the Number of Molecules in STED/RESOLFT Nanoscopy (J. Keller-Findeisen, S. Sahl, and S. W. Hell) -- Metal-Induced Energy Transfer Imaging (A. I. Chizhik, and J. Enderlein) -- Reversibly Switchable Fluorescent Proteins for RESOLFT Nanoscopy (N. A. Jensen, I. Jansen, M. Kamper, and S. Jakobs) -- A Statistical and Biophysical Toolbox to Elucidate Structure and Formation of Stress Fibers (B. Eltzner, L. Hauke, S. Huckemann, F. Fehfeldt, and C. Wollnik) -- Photonic Imaging with Statistical Guarantees: From Multiscale Testing to Multiscale Estimation (A. Munk, K. Proksch, H. Li, and F. Werner) -- Efficient, Quantitative Numerical Methods for Statistical Image Deconvolution and Denoising (D. R. Luke, C. Charitha, R. Shefi, and Y. Malitsky) -- Holographic Imaging and Tomography of Biological Cells and Tissues (T. Salditt, and M. Töpperwien) -- Constrained Reconstructions in X-ray Phase Contrast Imaging: Uniqueness, Stability and Algorithms (S. Maretzke, T. Hohage) -- Scanning Small-Angle X-ray Scattering and Coherent X-ray Imaging of Cells (T. Salditt and S. Köster) -- Single Particle Imaging with FEL using Photon Correlations (B. von Ardenne and H. Grubmüller) -- Development of Ultrafast X-ray Free Electron Laser Tools in (Bio)Chemical Research (S. Techert, S. Thekku Veedu, S. Bari) -- Polarization-sensitive Coherent Diffractive Imaging Using HHG (S. Zayko, O. Kfir, and C. Ropers) -- Nonlinear Light Generation in Localized Fields Using Gases and Tailored Solids (M. Sivis and C. Ropers) -- Wavefront and Coherence Characteristics of Extreme UV and Soft X-ray Sources (B. Schäfer, B. Flöter, T. Mey, and K. Mann) -- Laboratory-scale Soft X-ray Source for Microscopy and Absorption Spectroscopy (M. Müller and K. Mann) -- Multilayer Zone Plates for Hard X-ray Imaging (M. Osterhoff and H.-U. Krebs) -- Convergence Analysis of Iteraive Algorithms for Phase Retrieval (D. R. Luke and A.-L. Martins) -- One-Dimensional Discrete-Time Phase Retrieval (R. Beinert and G. Plonka).
Sommario/riassunto: This open access book, edited and authored by a team of world-leading researchers, provides a broad overview of advanced photonic methods for nanoscale visualization, as well as describing a range of fascinating in-depth studies. Introductory chapters cover the most relevant physics and basic methods that young researchers need to master in order to work effectively in the field of nanoscale photonic imaging, from physical first principles, to instrumentation, to mathematical foundations of imaging and data analysis. Subsequent chapters demonstrate how these cutting edge methods are applied to a variety of systems, including complex fluids and biomolecular systems, for visualizing their structure and dynamics, in space and on timescales extending over many orders of magnitude down to the femtosecond range. Progress in nanoscale photonic imaging in Göttingen has been the sum total of more than a decade of work by a wide range of scientists and mathematicians across disciplines, working together in a vibrant collaboration of a kind rarely matched. This volume presents the highlights of their research achievements and serves as a record of the unique and remarkable constellation of contributors, as well as looking ahead at the future prospects in this field. It will serve not only as a useful reference for experienced researchers but also as a valuable point of entry for newcomers.
Titolo autorizzato: Nanoscale Photonic Imaging  Visualizza cluster
ISBN: 3-030-34413-4
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 996418440303316
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Serie: Topics in Applied Physics, . 0303-4216 ; ; 134