Vai al contenuto principale della pagina
| Autore: |
Tuset Lars
|
| Titolo: |
Abstract Algebra via Numbers / / by Lars Tuset
|
| Pubblicazione: | Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025 |
| Edizione: | 1st ed. 2025. |
| Descrizione fisica: | 1 online resource (462 pages) |
| Disciplina: | 512 |
| Soggetto topico: | Algebra |
| Number theory | |
| Number Theory | |
| Àlgebra | |
| Teoria de nombres | |
| Soggetto genere / forma: | Llibres electrònics |
| Nota di contenuto: | Chapter 1. Number theory -- Chapter 2. Construction of numbers -- Chapter 3. Linear algebra -- Chapter 4. Groups -- Chapter 5. Representations of finite groups -- Chapter 6. Rings -- Chapter 7. Field extensions -- Chapter 8. Galois theory -- Chapter 9. Modules -- Chapter 10. Appendix. |
| Sommario/riassunto: | This book is a concise, self-contained treatise on abstract algebra with an introduction to number theory, where students normally encounter rigorous mathematics for the first time. The authors build up things slowly, by explaining the importance of proofs. Number theory with its focus on prime numbers is then bridged via complex numbers and linear algebra, to the standard concepts of a course in abstract algebra, namely groups, representations, rings, and modules. The interplay between these notions becomes evident in the various topics studied. Galois theory connects field extensions with automorphism groups. The group algebra ties group representations with modules over rings, also at the level of induced representations. Quadratic reciprocity occurs in the study of Fourier analysis over finite fields. Jordan decomposition of matrices is obtained by decomposition of modules over PID’s of complex polynomials. This latter example is just one of many stunning generalizations of the fundamental theorem of arithmetic, which in its various guises penetrates abstract algebra and figures multiple times in the extensive final chapter on modules. |
| Titolo autorizzato: | Abstract Algebra via Numbers ![]() |
| ISBN: | 9783031746239 |
| 3031746236 | |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9910983306603321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |