Vai al contenuto principale della pagina
Autore: |
Yang De-Nian
![]() |
Titolo: |
Advances in Knowledge Discovery and Data Mining : 28th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2024, Taipei, Taiwan, May 7–10, 2024, Proceedings, Part III / / edited by De-Nian Yang, Xing Xie, Vincent S. Tseng, Jian Pei, Jen-Wei Huang, Jerry Chun-Wei Lin
![]() |
Pubblicazione: | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024 |
Edizione: | 1st ed. 2024. |
Descrizione fisica: | 1 online resource (448 pages) |
Disciplina: | 006.3 |
Soggetto topico: | Artificial intelligence |
Algorithms | |
Education - Data processing | |
Computer science - Mathematics | |
Signal processing | |
Computer networks | |
Artificial Intelligence | |
Design and Analysis of Algorithms | |
Computers and Education | |
Mathematics of Computing | |
Signal, Speech and Image Processing | |
Computer Communication Networks | |
Altri autori: |
XieXing
![]() ![]() ![]() ![]() ![]() |
Nota di contenuto: | Intro -- General Chairs' Preface -- PC Chairs' Preface -- Organization -- Contents - Part III -- Interpretability and Explainability -- Neural Additive and Basis Models with Feature Selection and Interactions -- 1 Introduction -- 2 Generalized Additive Models (GAMs) -- 2.1 Neural Additive Model (NAM) -- 2.2 Neural Basis Model (NBM) -- 3 NAM and NBM with Feature Selection -- 3.1 Motivation -- 3.2 Model Architecture -- 3.3 Implementation Remark -- 4 Discussion of Model Complexities -- 5 Experiments -- 5.1 Experimental Settings -- 5.2 Baselines -- 5.3 Results -- 6 Conclusion -- References -- Random Mask Perturbation Based Explainable Method of Graph Neural Networks -- 1 Introduction -- 2 Related Work -- 3 Problem Statement -- 4 Explainable Method -- 4.1 Node Importance Based on Fidelity -- 4.2 Explanation Sparsity -- 5 Experiments -- 5.1 Experimental Setup -- 5.2 Quantitative Experiments -- 5.3 Ablation Study -- 5.4 Use Case -- 6 Conclusion -- References -- RouteExplainer: An Explanation Framework for Vehicle Routing Problem -- 1 Introduction -- 2 Related Work -- 3 Proposed Framework: RouteExplainer -- 3.1 Many-to-Many Edge Classifier -- 3.2 Counterfactual Explanation for VRP -- 4 Experiments -- 4.1 Quantitative Evaluation of the Edge Classifier -- 4.2 Qualitative Evaluation of Generated Explanations -- 5 Conclusion and Future Work -- References -- On the Efficient Explanation of Outlier Detection Ensembles Through Shapley Values -- 1 Introduction -- 2 Related Work -- 3 Outlier Detection Ensembles -- 4 The bagged Shapley Values -- 5 Theoretical Guarantees for the Approximation -- 6 Experiments -- 6.1 Quality of the Approximation -- 6.2 Effectiveness -- 6.3 Scalability -- 7 Conclusions -- References -- Interpreting Pretrained Language Models via Concept Bottlenecks -- 1 Introduction -- 2 Related Work -- 2.1 Interpreting Pretrained Language Models. |
2.2 Learning from Noisy Labels -- 3 Enable Concept Bottlenecks for PLMs -- 3.1 Problem Setup -- 4 C3M: A General Framework for Learning CBE-PLMs -- 4.1 ChatGPT-Guided Concept Augmentation -- 4.2 Learning from Noisy Concept Labels -- 5 Experiments -- 6 Conclusion -- A Definitions of Training Strategies -- B Details of the Manual Concept Annotation for the IMDB Dataset -- C Implementation Detail -- D Parameters and Notations -- E Statistics of Data Splits -- F Statistics of Concepts in Transformed Datasets -- G More Results on Explainable Predictions -- H A Case Study on Test-Time Intervention -- I Examples of Querying ChatGPT -- References -- Unmasking Dementia Detection by Masking Input Gradients: A JSM Approach to Model Interpretability and Precision -- 1 Introduction -- 2 Related Work -- 3 Methods -- 3.1 Jacobian Saliency Map (JSM) -- 3.2 Jacobian-Augmented Loss Function (JAL) -- 4 Experiments -- 4.1 Dataset -- 4.2 Preprocessing -- 4.3 Multimodal Classification -- 4.4 Performance Evaluation -- 5 Conclusion -- References -- Towards Nonparametric Topological Layers in Neural Networks -- 1 Introduction -- 1.1 Background -- 1.2 Motivation and Challenges -- 1.3 Contributions -- 2 Preliminaries and Related Work -- 2.1 Basics of Topology -- 2.2 Topological Neural Network -- 2.3 Functional Spaces for Machine Learning -- 3 Methodology -- 4 Evaluation -- 4.1 Experimental Setup -- 4.2 Implementation -- 4.3 Overall Performance -- 4.4 Learning Rate -- 4.5 Temporal-Spatial Correlation -- 5 Conclusion -- References -- Online, Streaming, Distributed Algorithms -- Streaming Fair k-Center Clustering over Massive Dataset with Performance Guarantee -- 1 Introduction -- 1.1 Problem Statement -- 1.2 Related Work -- 1.3 Our Contribution -- 2 A Two-Pass Algorithm with Approximation Ratio 3 -- 2.1 The -Independent Center Set -- 2.2 The Two-Pass Streaming Algorithm. | |
3 The Streaming Algorithm with an Approximation Ratio 7 -- 3.1 The Streaming Algorithm for Constructing 1 and 2 -- 3.2 Post-streaming Construction of Center Set C from 12 -- 4 Experimental Results -- 4.1 Experimental Setting -- 4.2 Experimental Analysis -- 5 Conclusion -- References -- Projection-Free Bandit Convex Optimization over Strongly Convex Sets -- 1 Introduction -- 2 Related Work -- 2.1 Projection-Free OCO Algorithms -- 2.2 Bandit Convex Optimization -- 3 Main Results -- 3.1 Preliminaries -- 3.2 Our Proposed Algorithm -- 3.3 Theoretical Guarantees -- 4 Experiments -- 4.1 Problem Settings -- 4.2 Experimental Results -- 5 Conclusion -- References -- Adaptive Prediction Interval for Data Stream Regression -- 1 Introduction -- 2 Related Work -- 3 Background -- 4 Adaptive Prediction Interval(AdaPI) -- 5 Experiments and Results -- 5.1 Comparison to Interval Forecast -- 5.2 Comparison Between MVE and AdaPI -- 6 Conclusions -- References -- Probabilistic Guarantees of Stochastic Recursive Gradient in Non-convex Finite Sum Problems -- 1 Introduction -- 1.1 Related Works -- 1.2 Our Contributions -- 1.3 Notation -- 2 Prob-SARAH Algorithm -- 3 Theoretical Results -- 3.1 Technical Assumptions -- 3.2 Main Results on Complexity -- 3.3 Proof Sketch -- 4 Numerical Experiments -- 4.1 Logistic Regression with Non-convex Regularization -- 4.2 Two-Layer Neural Network -- 5 Conclusion -- References -- Rethinking Personalized Federated Learning with Clustering-Based Dynamic Graph Propagation -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Model Overview -- 3.2 Client Model Clustering -- 3.3 Dynamic Weighted Graph Construction -- 3.4 Knowledge Propagation and Aggregation -- 3.5 Precise Personalized Model Distribution -- 4 Experiment -- 4.1 Experiment Setup -- 4.2 Performance Evaluation -- 4.3 Ablation Study -- 4.4 Case Study -- 4.5 Hyperparameter Study. | |
5 Conclusion -- References -- Unveiling Backdoor Risks Brought by Foundation Models in Heterogeneous Federated Learning -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Threat Model -- 3.2 FMs Empowered Backdoor Attacks to HFL -- 4 Experiment -- 4.1 Experiment Setup -- 4.2 Experimental Results -- 4.3 Homogeneous Setting Evaluation -- 4.4 Case Study: Attack Effectiveness v.s. Public Data Utilization Ratio -- 4.5 Hyper-Parameter Study: ASR v.s. Poisoning Ratio -- 5 Conclusion -- References -- Combating Quality Distortion in Federated Learning with Collaborative Data Selection -- 1 Introduction -- 2 Related Works -- 3 Proposal -- 3.1 Preliminaries -- 3.2 Design Principle -- 3.3 Collaborative Sample Selection (CSS) -- 4 Evaluation -- 4.1 Datasets and Experimental Settings -- 4.2 Experimental Results -- 5 Conclusion -- References -- Probabilistic Models and Statistical Inference -- Neural Marked Hawkes Process for Limit Order Book Modeling -- 1 Introduction -- 2 Background -- 3 Neural Marked Hawkes Process -- 4 Related Work -- 5 Experiments -- 6 Conclusion -- References -- How Large Corpora Sizes Influence the Distribution of Low Frequency Text n-grams -- 1 Introduction -- 2 Background and Related Work -- 3 The Model -- 4 Results -- 4.1 The Corpora Collection -- 4.2 The Range of k Values for W(k,C -- L,n) Prediction -- 4.3 The Assessment Criteria and Parameter Estimation -- 4.4 Comparison with Other Models -- 4.5 Obtained Results -- 4.6 The Predictions with Growing Corpus Size -- 5 Conclusions -- References -- Meta-Reinforcement Learning Algorithm Based on Reward and Dynamic Inference -- 1 Introduction -- 2 Background -- 2.1 Meta-Reinforcement Learning -- 2.2 Context-Based Meta-Reinforcement Learning -- 2.3 Parametric Task Distributions -- 3 Problem Statement -- 4 Method -- 4.1 Reward and Dynamics Inference. | |
4.2 Meta-Reinforcement Learning Algorithm Based on Reward and Dynamics Inference Encoders -- 5 Experiment -- 5.1 Common MuJoCo Environments -- 5.2 Cartesian Product Combinations of Tasks with Different Goals and Dynamics -- 6 Discussion -- References -- Security and Privacy -- SecureBoost+: Large Scale and High-Performance Vertical Federated Gradient Boosting Decision Tree -- 1 Introduction -- 2 Preliminaries -- 2.1 Gradient Boosting Decision Tree -- 2.2 Paillier Homomorphic Encryption -- 2.3 SecureBoost -- 2.4 Performance Bottlenecks Analysis for SecureBoost -- 3 Proposed SecureBoost+ Framework -- 3.1 Ciphertext Operation Optimization -- 3.2 Training Mechanism Optimization -- 4 Experiments -- 4.1 Setup -- 4.2 Ciphertext Operation Optimization Evaluation -- 4.3 Training Mechanism Optimization Evaluation -- 5 Conclusion -- References -- Construct a Secure CNN Against Gradient Inversion Attack -- 1 Introduction -- 2 Preliminary -- 2.1 Federated Learning -- 2.2 Gradient Inversion Attack -- 2.3 Recursive Gradient Attack on Privacy (R-GAP) -- 3 Secure Convolutional Neural Networks -- 4 Experiment -- 4.1 Quantitative Results -- 4.2 Quantitative Results -- 5 Related Work -- 6 Limitation and Conclusion -- References -- Backdoor Attack Against One-Class Sequential Anomaly Detection Models -- 1 Introduction -- 2 Related Work -- 3 Preliminaries -- 3.1 Deep One-Class Sequential Anomaly Detection -- 3.2 Mutual Information Maximization -- 4 Methodology -- 4.1 Threat Model -- 4.2 The Proposed Attack -- 4.3 Post-deployment Attack -- 5 Experiments -- 5.1 Experimental Setup -- 5.2 Experimental Results -- 6 Conclusions -- References -- Semi-supervised and Unsupervised Learning -- DALLMi: Domain Adaption for LLM-Based Multi-label Classifier -- 1 Introduction -- 2 Language Model and Domain Adaptation -- 3 DALLMi -- 4 Experiments -- 5 Conclusion -- References. | |
Contrastive Learning for Unsupervised Sentence Embedding with False Negative Calibration. | |
Sommario/riassunto: | The 6-volume set LNAI 14645-14650 constitutes the proceedings of the 28th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2024, which took place in Taipei, Taiwan, during May 7–10, 2024. The 177 papers presented in these proceedings were carefully reviewed and selected from 720 submissions. They deal with new ideas, original research results, and practical development experiences from all KDD related areas, including data mining, data warehousing, machine learning, artificial intelligence, databases, statistics, knowledge engineering, big data technologies, and foundations. |
Titolo autorizzato: | Advances in Knowledge Discovery and Data Mining ![]() |
ISBN: | 981-9722-59-4 |
Formato: | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910851994303321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |