Vai al contenuto principale della pagina

Functional safety of machinery : how to apply ISO 13849-1 and IEC 62061 / / Marco Tacchini



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Tacchini Marco Visualizza persona
Titolo: Functional safety of machinery : how to apply ISO 13849-1 and IEC 62061 / / Marco Tacchini Visualizza cluster
Pubblicazione: Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2023]
©2023
Descrizione fisica: 1 online resource (355 pages)
Disciplina: 780
Soggetto topico: Machinery - Safety regulations
Reliability (Engineering)
Safety regulations
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Acknowledgments -- About the Author -- Before You Start Reading this Book -- Chapter 1 The Basics of Reliability Engineering -- 1.1 The Birth of Reliability Engineering -- 1.1.1 Safety Critical Systems -- 1.2 Basic Definitions and Concepts of Reliability -- 1.3 Faults and Failures -- 1.3.1 Definitions -- 1.3.2 Random and Systematic Failures -- 1.3.2.1 How Random is a Random Failure? -- 1.4 Probability Elements Beyond Reliability Concepts -- 1.4.1 The Discrete Probability Distribution -- 1.4.1.1 Example: 10 Colored Balls -- 1.4.1.2 Example: 2 Dice -- 1.4.2 The Probability Density Function f (x) -- 1.4.2.1 Example -- 1.4.3 The Cumulative Distribution Function F(x) -- 1.4.4 The Reliability Function R(t) -- 1.5 Failure Rate λ -- 1.5.1 The Maclaurin Series -- 1.5.2 The Failure in Time or FIT -- 1.5.2.1 Example -- 1.6 Mean Time to Failure -- 1.6.1 Example of a Non-Constant Failure Rate -- 1.6.2 The Importance of the MTTF -- 1.6.3 The Median Life -- 1.6.4 The Mode -- 1.6.4.1 Example -- 1.6.4.2 Example -- 1.7 Mean Time Between Failures -- 1.8 Frequency Approach Example -- 1.8.1 Initial Data -- 1.8.2 Empirical Definition of Reliability and Unreliability -- 1.9 Reliability Evaluation of Series and Parallel Structures -- 1.9.1 The Reliability Block Diagrams -- 1.9.2 The Series Configuration -- 1.9.3 The Parallel Configuration -- 1.9.3.1 Two Equal and Independent Elements -- 1.9.4 M Out of N Functional Configurations -- 1.10 Reliability Functions in Low and High Demand Mode -- 1.10.1 The PFD -- 1.10.1.1 The Protection Layers -- 1.10.1.2 Testing of the Safety Instrumented System -- 1.10.2 The PFDavg -- 1.10.2.1 Dangerous Failures -- 1.10.2.2 How to Calculate the PFDavg -- 1.10.3 The PFH -- 1.10.3.1 Unconditional Failure Intensity w(t) vs Failure Density f (t).
1.10.3.2 Reliability Models Used to Estimate the PFH -- 1.11 Weibull Distribution -- 1.11.1 The Probability Density Function -- 1.11.2 The Cumulative Density Function -- 1.11.3 The Instantaneous Failure Rate -- 1.11.4 The Mean Time to Failure -- 1.11.4.1 Example -- 1.12 B10D and the Importance of T10D -- 1.12.1 The BX% Life Parameter and the B10D -- 1.12.1.1 Example -- 1.12.2 How λD and MTTFD are Derived from B10D -- 1.12.3 The Importance of the Parameter T10D -- 1.12.4 The Surrogate Failure Rate -- 1.12.5 Markov -- 1.13 Logical and Physical Representation of a Safety Function -- 1.13.1 De-energization of Solenoid Valves -- 1.13.2 Energization of Solenoid Valves -- Chapter 2 What is Functional Safety -- 2.1 A Brief History of Functional Safety Standards -- 2.1.1 IEC 61508 (All Parts) -- 2.1.1.1 HSE Study -- 2.1.1.2 Safety Integrity Levels -- 2.1.1.3 FMEDA -- 2.1.1.4 High and Low Demand Mode of Operation -- 2.1.1.5 Safety Functions and Safety-Related Systems -- 2.1.1.6 An Example of Risk Reduction Through Functional Safety -- 2.1.1.7 Why IEC 61508 was Written -- 2.1.2 ISO 13849-1 -- 2.1.3 IEC 62061 -- 2.1.4 IEC 61511 -- 2.1.4.1 Introduction -- 2.1.4.2 The Second Edition -- 2.1.4.3 Designing a SIS -- 2.1.4.4 Three Methods -- 2.1.4.5 The Concept of Protection Layers -- 2.1.4.6 The Different Types of Risk -- 2.1.4.7 The Tolerable Risk -- 2.1.4.8 The ALARP Principle -- 2.1.4.9 Hazard and Operability Studies (HAZOP) -- 2.1.4.10 Layer of Protection Analysis (LOPA) -- 2.1.5 PFDavg for Different Architectures -- 2.1.5.1 1oo1 Architecture in Low Demand Mode -- 2.1.5.2 Series of 1oo1 Architecture in Low Demand Mode -- 2.1.5.3 1oo2 Architecture in Low Demand Mode -- 2.1.5.4 1oo3 Architecture in Low Demand Mode -- 2.1.5.5 2oo3 Architecture in Low Demand Mode -- 2.1.5.6 Summary Table -- 2.1.5.7 Example of PFDAvg Calculation.
2.1.6 Reliability of a Safety Function in Low Demand Mode -- 2.1.7 A Timeline -- 2.2 Safety Systems in High and Low Demand Mode -- 2.2.1 Structure of the Control System in High and Low Demand Mode -- 2.2.1.1 Structure in Low Demand Mode, Process Industry -- 2.2.1.2 Structure in High Demand Mode, Machinery -- 2.2.1.3 Continuous Mode of Operation -- 2.2.2 The Border Line Between High and Low Demand Mode -- 2.2.2.1 Considerations in High Demand Mode -- 2.2.2.2 Considerations in Low Demand Mode -- 2.2.2.3 The Intermediate Region -- 2.3 What is a Safety Control System -- 2.3.1 Control System and Safety System -- 2.3.2 What is Part of a Safety Control System -- 2.3.3 Implication of Implementing an Emergency Start Function -- 2.4 CE Marking, OSHA Compliance, and Functional Safety -- 2.4.1 CE Marking -- 2.4.2 The European Standardization Organizations (ESOs) -- 2.4.3 Harmonized Standards -- 2.4.4 Functional Safety in North America -- 2.4.4.1 The Concept of Control Reliable -- 2.4.4.2 Functional Safety in the United States -- Chapter 3 Main Parameters -- 3.1 Failure Rate ( λ) -- 3.1.1 Definition -- 3.1.2 Detected and Undetected Failures -- 3.1.3 Failure Rate for Electromechanical Components -- 3.1.3.1 Input Subsystem: Interlocking Device -- 3.1.3.2 Input Subsystem: Pressure Switch -- 3.1.3.3 Output Subsystem: Solenoid Valve -- 3.1.3.4 Output Subsystem: Power Contactor -- 3.2 Safe Failure Fraction -- 3.2.1 SFF in Low Demand Mode: Pneumatic Solenoid Valve -- 3.2.1.1 Example -- 3.2.2 SFF in High Demand Mode: Pneumatic Solenoid Valve -- 3.2.2.1 Example for a 1oo1 Architecture -- 3.2.2.2 Example for a 1oo2D Architecture -- 3.2.3 SFF and Electromechanical Components -- 3.2.3.1 The Advantage of Electronic Sensors -- 3.2.3.2 SFF and DC for Electromechanical Components -- 3.2.4 SFF in Low Demand Mode: Analog Input.
3.2.5 SFF and DC in High Demand Mode: The Dynamic Test and Namur Circuits -- 3.2.5.1 Namur Type Circuits -- 3.2.5.2 Three Wire Digital Input -- 3.2.6 Limits of the SFF Parameter -- 3.2.6.1 Example -- 3.3 Diagnostic Coverage (DC) -- 3.3.1 Levels of Diagnostic -- 3.3.2 How to Estimate the DC Value -- 3.3.3 Frequency of the Test -- 3.3.4 Direct and Indirect Testing -- 3.3.4.1 DC for the Component and for the Channel -- 3.3.5 Testing by the Process -- 3.3.6 Examples of DC Values -- 3.3.7 Estimation of the Average DC -- 3.4 Safety Integrity and Architectural Constraints -- 3.4.1 The Starting Point -- 3.4.2 The Systematic Capability -- 3.4.2.1 Systematic Safety Integrity -- 3.4.3 Confusion Generated by the Concept of Systematic Capability -- 3.4.3.1 Random Capability -- 3.4.3.2 Systematic Capability -- 3.4.3.3 ISO 13849-1 -- 3.4.4 The Safety Lifecycle -- 3.4.5 The Software Safety Lifecycle -- 3.4.6 Hardware Fault Tolerance -- 3.4.7 The Hardware Safety Integrity -- 3.4.7.1 Type A and Type B Components -- 3.4.8 Route 1H -- 3.4.8.1 Route 1H and Type A Component: Example -- 3.4.8.2 Route 1H and Type B Component: Example -- 3.4.9 High Demand Mode Safety-Related Control Systems -- 3.4.9.1 Example -- 3.4.10 Route 2H -- 3.5 Mean Time to Failure (MTTF) -- 3.5.1 Examples of MTTF Values -- 3.5.2 Calculation of MTTFD and λD for Components from B10D -- 3.5.3 Estimation of MTTFD for a Combination of Systems -- 3.5.3.1 Example for Channels in Series -- 3.5.3.2 Example for Redundant Channels -- 3.6 Common Cause Failure (CCF) -- 3.6.1 Introduction to CCF and the Beta-Factor -- 3.6.2 How IEC 62061 Handles the CCF -- 3.6.3 How ISO 13849-1 Handles the CCF -- 3.7 Proof Test -- 3.7.1 Proof Test Procedures -- 3.7.1.1 Example of a Proof Test Procedure for a Pressure Transmitter -- 3.7.1.2 Example of a Proof Test Procedure for a Solenoid Valve.
3.7.2 How the Proof Test Interval Affects the System Reliability -- 3.7.2.1 Example -- 3.7.3 Proof Test in Low Demand Mode -- 3.7.3.1 Imperfect Proof Testing and the Proof Test Coverage (PTC) -- 3.7.3.2 Partial Proof Test (PPT) -- 3.7.3.3 Example for a Partial Valve Stroke Test -- 3.7.4 Proof Test in High Demand Mode -- 3.8 Mission Time and Useful Lifetime -- 3.8.1 Mission Time Longer than 20 Years -- Chapter 4 Introduction to ISO 13849-1 and IEC 62061 -- 4.1 Risk Assessment and Risk Reduction -- 4.1.1 Cybersecurity -- 4.1.2 Protective and Preventive Measures -- 4.1.3 Functional Safety as Part of the Risk Reduction Measures -- 4.1.4 The Naked Machinery -- 4.2 SRP/CS, SCS, and the Safety Functions -- 4.2.1 SRP/CS and SCS -- 4.2.2 The Safety Function and Its Subsystems -- 4.2.3 The Physical and the Functional Level -- 4.3 Examples of Safety Functions -- 4.3.1 Safety-Related Stop -- 4.3.2 Safety Sub-Functions Related to Power Drive Systems -- 4.3.2.1 Stopping Functions -- 4.3.2.2 Monitoring Functions -- 4.3.2.3 Information to be Provided by the PDS Manufacturer -- 4.3.3 Manual Reset -- 4.3.3.1 Multiple Sequential Reset -- 4.3.3.2 How to Implement the Reset Electrical Architecture -- 4.3.4 Restart Function -- 4.3.5 Local Control Function -- 4.3.6 Muting Function -- 4.3.7 Operating Mode Selection -- 4.4 The Emergency Stop Function -- 4.5 The Reliability of a Safety Function in High Demand Mode -- 4.5.1 PFHD and PFH -- 4.5.2 The Performance Level -- 4.5.3 The Safety Integrity Level -- 4.5.4 Relationship Between SIL and PL -- 4.5.5 Definition of Harm -- 4.6 Determination of the Required PL (PLr) According to ISO 13849-1 -- 4.6.1 Risk Parameters -- 4.6.1.1 S: Severity of Injury -- 4.6.1.2 F: Frequency and/or Exposure Time to Hazard -- 4.6.1.3 P: Possibility of Avoiding Hazard or Limiting Harm -- 4.6.1.4 An Example on How to Use the Graph.
4.7 Rapex Directive.
Titolo autorizzato: Functional safety of machinery  Visualizza cluster
ISBN: 1-119-78912-5
1-119-78910-9
1-119-78905-2
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910830185503321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui