Vai al contenuto principale della pagina
Autore: | Inamuddin |
Titolo: | Sustainable Materials for Electrochemcial Capacitors |
Pubblicazione: | Newark : , : John Wiley & Sons, Incorporated, , 2023 |
©2023 | |
Edizione: | 1st ed. |
Descrizione fisica: | 1 online resource (467 pages) |
Disciplina: | 621.31/5 |
Soggetto topico: | Capacitors - Materials |
Altri autori: | AltalhiTariq AdnanSayed Mohammed |
Nota di contenuto: | Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Sustainable Materials for Electrochemical Supercapacitors: Eco Materials -- 1.1 Introduction -- 1.2 Eco-Carbon-Based Electrode Materials -- 1.3 Eco-Metal Oxide-Based Electrode Materials -- 1.4 Eco-Carbon-Based Material/Metal Oxide Composite Electrode Materials -- 1.5 Conclusion -- References -- Chapter 2 Solid Waste-Derived Carbon Materials for Electrochemical Capacitors -- 2.1 Introduction -- 2.2 Solid Waste as a Source of CNS -- 2.3 Preparation and Activation Methods of Solid Waste-Derived CNS -- 2.4 Effect of Structural and Morphological Diversities on Electrochemical Performance -- 2.5 Environmental Trash-Derived CNS in Electrochemical Capacitors -- 2.6 Challenges and Future Prospects -- 2.7 Conclusions -- References -- Chapter 3 Metal Hydroxides -- 3.1 Introduction -- 3.2 Method to Fabricate Metal Hydroxide -- 3.2.1 Precipitation Strategy -- 3.2.2 Post-Uniting and Metal Cation Consolidation Strategy -- 3.2.3 Ion Exchange Method -- 3.2.4 Sonochemical Method -- 3.2.5 Hydrothermal Method -- 3.2.6 Polyol Synthesis -- 3.3 Properties and Applications of MOHs -- 3.3.1 MOH Flame Retardants -- 3.3.1.1 Alumina Tri-Hydrate (ATH) and Milk of Magnesia -- 3.3.1.2 Utilization of Mg(OH)2 as a Flame Resistance in Plastics -- 3.3.2 MOHs Sludge Can Be Used as Latest Adsorbent -- 3.3.3 Metal Hydroxide MOH Nanostructures -- 3.3.4 MOHs for Supercapacitor Electrode Materials -- 3.3.5 Drugs or Pharmaceutical Applications -- 3.3.5.1 Ca(OH)2 Used in Dental Practice -- 3.3.6 Removal of Toxins from the Water -- 3.3.6.1 Water's Physical and Chemical Characteristics -- 3.3.6.2 Types of Wastewater -- 3.3.6.3 Treatment Techniques of Wastewater -- 3.3.6.4 Metal Hydroxide for Treatment of Wastewater -- 3.4 Examples of Metal Hydroxide -- 3.4.1 Calcium Hydroxide Ca(OH)2. |
3.4.1.1 Utilizations of Ca(OH)2 in Dental Detailing of Ca(OH)2 (Glues) -- 3.4.1.2 Materials for Setting the Therapeutic Effect -- 3.4.1.3 Covering of Pits -- 3.4.2 Magnesium Hydroxide Mg(OH)2 -- 3.4.3 Copper Hydroxide -- 3.4.4 Graphene Hydroxide -- 3.4.5 Nickel Hydroxides -- 3.4.6 Aluminum Hydroxide -- 3.4.6.1 Sources of Human Exposure in the Environment -- 3.4.6.2 Natural Levels and Exposure to the Environment and Humans -- 3.4.6.3 Kinetics and Metabolism in Humans -- 3.4.6.4 Animals -- 3.5 Conclusions -- References -- Chapter 4 Porous Organic Polymers: Genres, Chemistry, Synthetic Strategies, and Diversified Applications -- 4.1 Introduction -- 4.2 Family of Porous Organic Materials -- 4.2.1 Covalent Organic Frameworks (COFs) -- 4.2.1.1 Historical Development of Covalent Organic Frameworks COFs -- 4.2.1.2 Chemistry of Covalent Organic Frameworks (COFs) -- 4.2.1.3 Classifications of COFs -- 4.2.1.4 Synthetic Strategy Adopted for COFs Formation -- 4.2.1.5 Characterization COF -- 4.2.1.6 Applications of COF -- 4.2.2 Covalent Triazine Frameworks (CTF) -- 4.2.2.1 Historical Development of CTF -- 4.2.2.2 Chemistry of CTFs -- 4.2.2.3 Synthesize of CTFs -- 4.2.2.4 Characterizations of CTFs -- 4.2.2.5 Applications of CTF -- 4.2.3 Hyper-Cross-Linked Polymers (HCPs) -- 4.2.3.1 Historical Development -- 4.2.3.2 Chemistry of HCPs -- 4.2.3.3 Synthesis of HCPs -- 4.2.3.4 Characterization and Applications of HCP -- 4.2.3.5 Applications of HCPs -- 4.2.4 Conjugated Micro Porous Polymers (CMP) -- 4.2.4.1 Historical Development and Selected Advances of Conjugated Micro Porous Polymers -- 4.2.4.2 Design and Synthetic Strategy Adopted for Synthesizing CMPs -- 4.2.4.3 Characterization of Conjugated Microporous Polymers (CMP) -- 4.2.4.4 Applications of CMPs -- 4.2.5 Porous Aromatic Frameworks (PAFs) -- 4.2.5.1 Historical Development of PAF -- 4.2.5.2 Chemistry of PAF. | |
4.2.5.3 Design Principles and Synthetic Strategy Adopted to Synthesize PAFs -- 4.2.5.4 Synthesize of PAFs -- 4.2.5.5 PAF Characterization -- 4.2.5.6 Applications -- 4.2.6 Porous Organic Cages -- 4.2.6.1 Characterization of Organic Cages -- 4.3 Conclusions and Perspectives -- References -- Chapter 5 Gel-Type Natural Polymers as Electroconductive Materials -- 5.1 Introduction -- 5.2 Natural Polymers -- 5.2.1 Hydrogels -- 5.2.2 Classification of Hydrogels -- 5.2.3 Composition of Hydrogels -- 5.2.4 Natural Polymers Derived Hydrogels -- 5.2.5 Cellulose-Based Hydrogels -- 5.2.6 Chitosan-Based Hydrogels -- 5.2.7 Xanthan Gum-Based Hydrogels -- 5.2.8 Sea Weed-Derived Polysaccharide-Based Hydrogels -- 5.2.9 Protein-Based Hydrogels -- 5.2.10 DNA-Based Hydrogels -- 5.3 Synthesis Methods for Fabrication of Natural Polymer-Based Hydrogels -- 5.3.1 Natural Polymer-Based Chemically Cross-Linked Hydrogels -- 5.3.2 Grafting Method -- 5.3.3 Radical Polymerization Method -- 5.3.4 Irradiation Method -- 5.3.5 Enzymatic Reaction Method -- 5.4 Natural Polymer-Based Physically Cross-Linked Hydrogels -- 5.4.1 By Freezing and Thawing Cycles -- 5.4.2 By Hydrogen Bonding -- 5.4.3 By Ionic Interactions -- 5.5 Properties of Natural Polymer-Based Hydrogels -- 5.5.1 Mechanical Properties -- 5.5.2 Biodegradability -- 5.5.3 Swelling Characteristics -- 5.6 Stimuli Sensitivity of Hydrogels -- 5.7 Application of Hydrogels as Electrochemical Supercapacitors -- 5.7.1 Types of Supercapacitors -- 5.7.2 Electrochemical Double-Layer Capacitor (EDLC) -- 5.7.3 Pseudo Capacitor -- 5.7.4 Asymmetric or Hybrid Supercapacitors -- 5.8 Conducting Polymer Hydrogels as Electrode Materials -- 5.9 Conducting Polymer Hydrogels as Electrolyte Materials -- 5.10 Conclusion -- References -- Chapter 6 Ionic Liquids for Supercapacitors -- 6.1 Introduction -- 6.2 Brief Introduction of Supercapacitor. | |
6.2.1 Supercapacitor and Its Classification -- 6.2.2 Electrolyte of Supercapacitor -- 6.3 Ionic Liquids and Its Unique Properties -- 6.4 Application of Ionic Liquids in Supercapacitors -- 6.4.1 Pure Ionic Liquid as Electrolyte -- 6.4.1.1 Aprotic Ionic Liquids -- 6.4.1.2 Proton Ionic Liquids -- 6.4.1.3 Functionalized Ionic Liquids -- 6.4.2 Mixture Electrolyte of Ionic Liquids -- 6.4.2.1 Binary of Ionic Liquids -- 6.4.2.2 Mixed Electrolyte of Organic Solvent and Ionic Liquids -- 6.4.2.3 Mixed Electrolyte of Ionic Liquid and Ionic Salt -- 6.5 Conclusion and Prospective -- Acknowledgments -- References -- Chapter 7 Functional Binders for Electrochemical Capacitors -- 7.1 Introduction -- 7.2 Characteristics of Binder -- 7.3 Method of Fabricating Supercapacitor Electrode -- 7.4 Mechanism of Binding Process -- 7.5 Classification of Binders -- 7.5.1 On the Basis of Origin -- 7.5.2 On the Basis of Reactivity -- 7.6 Characterization Techniques -- 7.7 Conventional Binders and Related Issues -- 7.8 Sustainable Binders -- 7.9 Conclusion -- References -- Chapter 8 Sustainable Substitutes for Fluorinated Electrolytes in Electrochemical Capacitors -- 8.1 Introduction -- 8.2 Fluorinated Electrolytes -- 8.3 Sustainable Substitutes for Fluorinated Electrolytes -- 8.3.1 Aqueous Electrolytes -- 8.3.1.1 Seawater -- 8.3.1.2 Aqueous Solution of Redox-Active Ligands as Electrolytes -- 8.3.2 Organic Electrolytes -- 8.3.3 Solid-State Electrolytes -- 8.4 Performance of Sustainable Electrolytes Compared to Fluorinated Electrolytes -- 8.4.1 Strongly Acidic Electrolytes -- 8.4.2 Strong Alkaline Electrolytes -- 8.4.3 Neutral Electrolytes -- 8.4.4 Organic Electrolytes -- 8.5 Final Remarks -- References -- Chapter 9 Aqueous Redox-Active Electrolytes -- 9.1 Introduction -- 9.2 Effect of the Electrolyte on Supercapacitor Performance -- 9.3 Aqueous Electrolytes. | |
9.4 Acidic Electrolytes -- 9.4.1 Sulfuric Acid Electrolyte-Based EDLC and Pseudocapacitors -- 9.4.2 H2SO4 Electrolyte-Based Hybrid Supercapacitors -- 9.5 Alkaline Electrolytes -- 9.5.1 Alkaline Electrolyte-Based EDLC and Pseudocapacitors -- 9.5.2 Alkaline Electrolyte-Based Hybrid Supercapacitors -- 9.6 Neutral Electrolyte -- 9.6.1 Neutral Electrolyte-Based EDLC and Pseudocapacitors -- 9.6.2 Neutral Electrolyte-Based Hybrid Supercapacitors -- 9.7 Conclusion and Future Research Directions -- References -- Chapter 10 Biodegradable Electrolytes -- 10.1 Introduction -- 10.2 Classification of Biodegradable Electrolytes -- 10.2.1 Solid Polymer Electrolytes -- 10.2.2 Gel Polymer Electrolytes -- 10.2.3 Composite Polymer Electrolytes -- 10.3 Preparation of Biodegradable Electrolytes -- 10.4 Some Defined Ways to Increase the Ionic Conductivity -- 10.4.1 Polymer Blending -- 10.4.2 Incorporation of Additives -- 10.5 Factors Affecting Ion Conduction of Biodegradable Polymer Electrolytes -- 10.6 Properties of Ideal Biodegradable Electrolyte System -- 10.7 Applications of Biodegradable Electrolytes -- 10.7.1 Biodegradable Electrolytes in Fuel Cells -- 10.7.2 Biodegradable Electrolytes and Batteries -- 10.7.3 Supercapacitors in Terms of Biodegradable Electrolytes -- 10.7.4 Biodegradable Electrolytes in Dye Sensitized Solar Cells -- 10.8 Conclusion -- References -- Chapter 11 Supercapattery: An Electrochemical Energy Storage Device -- 11.1 Introduction -- 11.2 Batteries and Capacitors -- 11.3 Supercapattery Device and Electrode Materials -- 11.3.1 Metal-Based Materials and Their Composites -- 11.3.2 Polymers and their Composites -- 11.3.3 Carbon Materials and Their Composites -- 11.4 Advantages and Challenges of Supercapatteries -- 11.5 Conclusions -- References -- Chapter 12 Ceramic Multilayers and Films for High.Performance Supercapacitors -- 12.1 Introduction. | |
12.2 Different Types of Ceramic Materials. | |
Sommario/riassunto: | Sustainable Materials for Electrochemical Capacitors The book highlights the properties of sustainable materials for the production of commercial electrochemical capacitors. Sustainable Materials for Electrochemical Capacitors details the progress in the usage of ubiquitous environmentally sustainable materials. Due to their cost effectiveness, flexible forms, frequent accessibility, and environmentally friendly nature, electrochemical capacitors with significant surface areas of their carbon components are quite common. Many novel ways for using bio-derived components in highly efficient electrochemical capacitors are being established as a consequence of current research, and this book provides details of all these developments. The book provides: A broad overview of properties explored for the development of electrochemical capacitors; Introduces potential applications of electrochemical capacitors; Highlights sustainable materials exploited for the production of electrochemical capacitors; Presents commercial potential of electrochemical capacitors. Audience This is a useful guide for engineers, materials scientists, physicists, and innovators, who are linked to the development and applications of electrochemical capacitors. |
Titolo autorizzato: | Sustainable Materials for Electrochemcial Capacitors |
ISBN: | 1-394-16710-5 |
1-394-16709-1 | |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910829869003321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |