Vai al contenuto principale della pagina
Autore: | Mochizuki Takuro <1972-> |
Titolo: | Asymptotic behaviour of tame harmonic bundles and an application to pure twistor D-modules / / Takuro Mochizuki |
Pubblicazione: | Providence, Rhode Island : , : American Mathematical Society, , [2007] |
©2007 | |
Descrizione fisica: | 1 online resource (262 p.) |
Disciplina: | 514.74 |
Soggetto topico: | Hodge theory |
D-modules | |
Vector bundles | |
Harmonic maps | |
Note generali: | Description based upon print version of record. |
Nota di bibliografia: | Includes bibliographical references and index. |
Nota di contenuto: | ""15.4. Relation of the filt rations of C""""15.5. The characterization of C""; ""Chapter 16. The Filtrations of C[ð[sub(t)]]""; ""16.1. The filtration U[sup((λ[sub(0)]))]""; ""16.2. Preliminary reductions and decompositions""; ""16.3. Primitive decomposition""; ""16.4. The associated graded modules""; ""16.5. Some decompositions for Ï?[sub(t,u)]C[ð[sub(t)]]""; ""Chapter 17. The Weight Filtration on Ï?[sub(t,u)] and the Induced R-Triple""; ""17.1. The weight filtration on [sup(I)]L""; ""17.2. The filtration F[sup((λ[sub(0)]))] and the weight filtration"" |
""17.3. Strict specializability along Z[sub(i)] = 0""""17.4. Strict S-decomposability along Z[sub(i)] = 0""; ""Chapter 18. The Sesqui-linear Pairings""; ""18.1. The sesqui-linear pairing on C""; ""18.2. The sesqui-linear pairing on the induced flat bundles""; ""18.3. Preliminary for the calculation of the specialization""; ""18.4. The specialization of the pairings""; ""Chapter 19. Polarized Pure Twistor D-module and Tame Harmonic Bundles""; ""19.1. Correspondence""; ""19.2. The tameness of the corresponding harmonic bundle""; ""19.3. The existence of the prolongment"" | |
""19.4. The uniqueness of the prolongment""""19.5. The pure imaginary case""; ""19.6. The conjectures of Kashiwara and Sabbah""; ""Chapter 20. The Pure Twistor D-modules on a Smooth Curve (Appendix)""; ""20.1. Pure twistor D-module and tame harmonic bundle""; ""20.2. Twistor property for push-forward""; ""Part 5. Characterization of Semisimplicity by Tame Pure Imaginary Pluri-harmonic Metric""; ""Chapter 21. Preliminary""; ""21.1. Miscellaneous""; ""21.2. Elementary geometry of GL(r)/U(r)""; ""21.3. Maps associated to commuting tuple of endomorphisms"" | |
""21.4. Preliminary for harmonic maps and harmonic bundles""""Chapter 22. Tame Pure Imaginary Harmonic Bundle""; ""22.1. Definition""; ""22.2. Tame pure imaginary harmonic bundle on a punctured disc""; ""22.3. Semisimplicity""; ""22.4. The maximum principle""; ""22.5. The uniqueness of tame pure imaginary pluri-harmonic metric""; ""Chapter 23. The Dirichlet Problem in the Punctured Disc Case""; ""23.1. The Dirichlet problem for a sequence of the boundary values""; ""23.2. Family version""; ""Chapter 24. Control of the Energy of Twisted Maps on a Kahler Surface"" | |
""24.1. Around smooth points of divisors"" | |
Titolo autorizzato: | Asymptotic behaviour of tame harmonic bundles and an application to pure twistor D-modules |
ISBN: | 1-4704-0474-5 |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910788743303321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |