Vai al contenuto principale della pagina
Autore: | Brown Nathanial P (Nathanial Patrick), <1972-> |
Titolo: | Invariant means and finite representation theory of C-algebras / / Nathanial P. Brown |
Pubblicazione: | Providence, Rhode Island : , : American Mathematical Society, , [2006] |
©2006 | |
Descrizione fisica: | 1 online resource (122 p.) |
Disciplina: | 512/.556 |
Soggetto topico: | C*-algebras |
Representations of algebras | |
Note generali: | "Volume 184, number 865 (first of 4 numbers)." |
Nota di bibliografia: | Includes bibliographical references (pages 103-105). |
Nota di contenuto: | ""Contents""; ""Chapter 1. Introduction""; ""Chapter 2. Notation, definitions and useful facts""; ""Chapter 3. Amenable traces and stronger approximation properties""; ""3.1. Characterizations of amenable traces""; ""3.2. Uniform amenable traces""; ""3.3. Quasidiagonal traces""; ""3.4. Locally finite dimensional traces""; ""3.5. Miscellaneous remarks and permanence properties""; ""Chapter 4. Examples and special cases""; ""4.1. Discrete groups""; ""4.2. Nuclear and WEP C*- algebras""; ""4.3. Locally reflexive, exact and quasidiagonal C*-algebras""; ""4.4. Type I C*-algebras"" |
""4.5. Tracially AF C*-algebras""""Chapter 5. Finite representations""; ""5.1. Ili-factor representations of some universal C*-algebras""; ""5.2. Elliott's intertwining argument for IIi-factors""; ""5.3. Hi-factor representations of Popa Algebras""; ""Chapter 6. Applications and connections with other areas""; ""6.1. Elliott's classification program""; ""6.2. Counterexamples to questions of Lin and Popa""; ""6.3. Connes' embedding problem""; ""6.4. Amenable traces and numerical analysis""; ""6.5. Amenable traces and obstructions in K-homology"" | |
""6.6. Stable finiteness versus quasidiagonality""""6.7. Questions""; ""Bibliography"" | |
Titolo autorizzato: | -algebras |
ISBN: | 1-4704-0469-9 |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910788743203321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |