Vai al contenuto principale della pagina

n-harmonic mappings between annuli : the art of integrating free Lagrangians / / Tadeusz Iwaniec, Jani Onninen



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Iwaniec Tadeusz Visualizza persona
Titolo: n-harmonic mappings between annuli : the art of integrating free Lagrangians / / Tadeusz Iwaniec, Jani Onninen Visualizza cluster
Pubblicazione: Providence, Rhode Island : , : American Mathematical Society, , 2012
©2012
Descrizione fisica: 1 online resource (105 p.)
Disciplina: 516.3/62
Soggetto topico: Quasiconformal mappings
Extremal problems (Mathematics)
Persona (resp. second.): OnninenJani <1973->
Note generali: "July 2012, Volume 218, Number 1023 (first of 5 numbers)."
Nota di bibliografia: Includes bibliographical references.
Nota di contenuto: ""Contents""; ""Preface""; ""Chapter 1. Introduction and Overview""; ""1. Basic notation""; ""2. Mathematical model of hyperelasticity""; ""3. Variational integrals in GFT""; ""4. Conformal energy""; ""5. Weak limits of homeomorphisms""; ""6. Annuli""; ""7. Hammering a part of an annulus into a circle, n=2""; ""8. Principal n-harmonics""; ""9. Elasticity of stretching""; ""10. Conformally expanding pair""; ""11. Conformally contracting pair""; ""12. The conformal case Mod A = Mod A""; ""13. The energy function Fh""; ""14. Free Lagrangians""; ""15. Uniqueness""
""16. The L1-theory of inner distortion""""Conclusion""; ""Part 1. Principal Radial n-Harmonics""; ""Chapter 2. Nonexistence of n-Harmonic Homeomorphisms""; ""Chapter 3. Generalized n-Harmonic Mappings""; ""1. Solutions to the generalized n-harmonic equation that are not n-harmonic""; ""2. Slipping along the boundaries""; ""3. Proof of Theorem 1.7""; ""Chapter 4. Notation""; ""1. Annuli and their modulus""; ""2. Polar coordinates in Rn""; ""3. Spherical coordinates, latitude and longitude""; ""4. Radial stretching""; ""5. Spherical mappings""; ""Chapter 5. Radial n-Harmonics""
""1. The n-Laplacian for the strain function""""2. The principal solutions""; ""3. The elasticity function""; ""4. The principal solution H+ (conformal contraction)""; ""5. The principal solution H- (conformal expansion)""; ""6. The boundary value problem for radial n-harmonics""; ""Chapter 6. Vector Calculus on Annuli""; ""1. Radial and spherical derivatives""; ""2. Some differential forms""; ""Chapter 7. Free Lagrangians""; ""Chapter 8. Some Estimates of Free Lagrangians""; ""1. The Fh-energy integral with operator norm""; ""2. Radial symmetry""; ""3. Proof of Theorem 1.14""
""1. Extremal deformations of the sphere """"2. Random variable setting""; ""3. Pulling back a homothety via stereographic projection""; ""4. Back to the variational integral T[]""; ""5. The failure of radial symmetry, Proof of Theorem 1.11""; ""Chapter 15. Quasiconformal Mappings between Annuli""; ""Bibliography""
Titolo autorizzato: N-harmonic mappings between annuli  Visualizza cluster
ISBN: 0-8218-9008-5
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910788618103321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Memoirs of the American Mathematical Society ; ; Volume 218, Number 1023.