Vai al contenuto principale della pagina
Autore: | Street Brian |
Titolo: | Multi-parameter singular integrals / / Brian Street |
Pubblicazione: | Princeton, New Jersey ; ; Oxfordshire, England : , : Princeton University Press, , 2014 |
©2014 | |
Edizione: | Course Book |
Descrizione fisica: | 1 online resource (412 p.) |
Disciplina: | 515/.98 |
Soggetto topico: | Singular integrals |
Transformations (Mathematics) | |
Soggetto non controllato: | CaldernКygmund singular integrals |
CaldernКygmund | |
CarnotЃarathodory balls | |
CarnotЃarathodory geometry | |
CarnotЃarathodory metric | |
Euclidean singular integral operators | |
Frobenius theorem | |
Frobenius | |
LittlewoodАaley theory | |
Schwartz space | |
Sobolev spaces | |
convolution | |
elliptic partial differential equations | |
elliptic partial differential operators | |
flag kernels | |
invariant operators | |
linear partial differential equation | |
non-homogeneous kernels | |
pseudodifferential operators | |
singular integral operator | |
singular integral operators | |
singular integrals | |
strengthened cancellation | |
Classificazione: | SI 830 |
Note generali: | Description based upon print version of record. |
Nota di bibliografia: | Includes bibliographical references and index. |
Nota di contenuto: | Front matter -- Contents -- Preface -- 1. The Calderón-Zygmund Theory I: Ellipticity -- 2. The Calderón-Zygmund Theory II: Maximal Hypoellipticity -- 3. Multi-parameter Carnot-Carathéodory Geometry -- 4. Multi-parameter Singular Integrals I: Examples -- 5. Multi-parameter Singular Integrals II: General Theory -- Appendix A. Functional Analysis -- Appendix B. Three Results from Calculus -- Appendix C. Notation -- Bibliography -- Index |
Sommario/riassunto: | This book develops a new theory of multi-parameter singular integrals associated with Carnot-Carathéodory balls. Brian Street first details the classical theory of Calderón-Zygmund singular integrals and applications to linear partial differential equations. He then outlines the theory of multi-parameter Carnot-Carathéodory geometry, where the main tool is a quantitative version of the classical theorem of Frobenius. Street then gives several examples of multi-parameter singular integrals arising naturally in various problems. The final chapter of the book develops a general theory of singular integrals that generalizes and unifies these examples. This is one of the first general theories of multi-parameter singular integrals that goes beyond the product theory of singular integrals and their analogs. Multi-parameter Singular Integrals will interest graduate students and researchers working in singular integrals and related fields. |
Titolo autorizzato: | Multi-parameter singular integrals |
ISBN: | 1-4008-5275-7 |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910786417503321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |