Vai al contenuto principale della pagina

The index theorem and the heat equation method [[electronic resource] /] / Yanlin Yu



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Yu Yanlin Visualizza persona
Titolo: The index theorem and the heat equation method [[electronic resource] /] / Yanlin Yu Visualizza cluster
Pubblicazione: Singapore ; ; River Edge, NJ, : World Scientific, c2001
Descrizione fisica: 1 online resource (309 p.)
Disciplina: 514.74
Soggetto topico: Atiyah-Singer index theorem
Heat equation
Note generali: Description based upon print version of record.
Nota di bibliografia: Includes bibliographical references (p. 279-282) and index.
Nota di contenuto: PREFACE; CONTENTS; DEFINITIONS AND FORMULAS; CHAPTER 1 PRELIMINARIES IN RIEMANNIAN GEOMETRY; 1.1 Basic Notions of Riemannian Geometry; 1.2 Computations by using Orthonormal Moving Frame; 1.3 Differential Forms and Orthonormal Moving Frame Method; 1.4 Classical Geometric Operators; 1.5 Normal Coordinates; 1.6 Computations on Sphere; 1.7 Connections on Vector Bundles and Principal Bundles; 1.8 General Tensor Calculus; CHAPTER 2 SCHRODINGER AND HEAT OPERATORS; 2.1 Fundamental Solution and Levi Iteration; 2.2 Existence of Fundamental Solution; 2.3 Cauchy Problem of Heat Equation
2.4 Hodge Theorem2.5 Applications of Hodge Theorem; 2.6 Index Problem; CHAPTER 3 MP PARAMETRIX AND APPLICATIONS; 3.1 MP Parametrix; 3.2 Existence of Initial Solutions; 3.3 Asymptotic Expansion for Heat Kernel; 3.4 Local Index for Elliptic Operators; CHAPTER 4 CHERN-WEIL THEORY; 4.1 Characteristic Forms and Characteristic Classes; 4.2 General Characteristic Forms; 4.3 Chern Root Algorithm; 4.4 Formal Approach to Local Index of Signature Operator; CHAPTER 5 CLIFFORD ALGEBRA AND SUPER ALGEBRA; 5.1 Clifford Algebra; 5.2 Super Algebra; 5.3 Computations on Supertraces; CHAPTER 6 DIRAC OPERATOR
6.1 Spin Structure6.2 Spinor Bundle; 6.3 Dirac Operator; 6.4 Index of Dirac Operator; CHAPTER 7 LOCAL INDEX THEOREMS; 7.1 Local Index Theorem for Dirac Operator; 7.2 Local Index Theorem for Signature Operator; 7.3 Local Index Theorem for de Rham-Hodge Operator; CHAPTER 8 RIEMANN-ROCH THEOREM; 8.1 Hermitian Metric; 8.2 Hermitian Connection; 8.3 Riemann-Roch Operator; 8.4 Weitzenbock Formula; 8.5 Index Theorem; 8.6 Riemann-Roch Operator in Complex Analysis; REFERENCES; INDEX
Sommario/riassunto: This book provides a self-contained representation of the local version of the Atiyah-Singer index theorem. It contains proofs of the Hodge theorem, the local index theorems for the Dirac operator and some first order geometric elliptic operators by using the heat equation method. The proofs are up to the standard of pure mathematics. In addition, a Chern root algorithm is introduced for proving the local index theorems, and it seems to be as efficient as other methods. Contents: Preliminaries in Riemannian Geometry; Schrödinger and Heat Operators; MP Parametrix and Applications; Chern-Weil Th
Titolo autorizzato: The index theorem and the heat equation method  Visualizza cluster
ISBN: 1-281-95164-1
9786611951641
981-281-010-2
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910782394003321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Nankai tracts in mathematics ; ; v. 2.