Vai al contenuto principale della pagina

Machine Learning for Evolution Strategies / / by Oliver Kramer



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Kramer Oliver Visualizza persona
Titolo: Machine Learning for Evolution Strategies / / by Oliver Kramer Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016
Edizione: 1st ed. 2016.
Descrizione fisica: 1 online resource (IX, 124 p. 38 illus. in color.)
Disciplina: 006.31
Soggetto topico: Computational intelligence
Computer simulation
Data mining
System theory
Artificial intelligence
Computational Intelligence
Computer Modelling
Data Mining and Knowledge Discovery
Complex Systems
Artificial Intelligence
Nota di bibliografia: Includes bibliographical references at the end of each chapters and index.
Nota di contenuto: Part I Evolution Strategies -- Part II Machine Learning -- Part III Supervised Learning.
Sommario/riassunto: This book introduces numerous algorithmic hybridizations between both worlds that show how machine learning can improve and support evolution strategies. The set of methods comprises covariance matrix estimation, meta-modeling of fitness and constraint functions, dimensionality reduction for search and visualization of high-dimensional optimization processes, and clustering-based niching. After giving an introduction to evolution strategies and machine learning, the book builds the bridge between both worlds with an algorithmic and experimental perspective. Experiments mostly employ a (1+1)-ES and are implemented in Python using the machine learning library scikit-learn. The examples are conducted on typical benchmark problems illustrating algorithmic concepts and their experimental behavior. The book closes with a discussion of related lines of research.
Titolo autorizzato: Machine Learning for Evolution Strategies  Visualizza cluster
ISBN: 3-319-33383-6
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910739403203321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Studies in Big Data, . 2197-6511 ; ; 20