Vai al contenuto principale della pagina

Detecting environmental radioactivity / / M. García-León



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: García-León M (Manuel) Visualizza persona
Titolo: Detecting environmental radioactivity / / M. García-León Visualizza cluster
Pubblicazione: Cham, Switzerland : , : Springer, , [2023]
©2023
Descrizione fisica: 1 online resource (637 pages)
Disciplina: 294.33653
Soggetto topico: Radiation, Background - Measurement
Radioactive pollution - Measurement
Note generali: Includes index.
Nota di contenuto: Intro -- Preface -- Contents -- 1 Radioactivity: History and Phenomenology -- 1.1 Basic Description of the Atomic Nucleus. Nuclear Stability -- 1.1.1 Simple Nuclear Models -- 1.1.2 Atomic and Mass Numbers. Isobars, Isotopes, and Isotone Nuclei -- 1.1.3 Unstable Nuclides -- 1.2 Discovery of Radioactivity -- 1.2.1 Some Historic Data -- 1.2.2 Phenomenology of Radioactivity -- 1.3 Types of Radioactivity -- 1.3.1 Alpha Radioactivity -- 1.3.2 Beta Radioactivity: Electrons, Positrons, and Electron Capture -- 1.3.3 Gamma Radioactivity: Electromagnetic Radiation, Conversion Electrons, and Isomers -- 1.3.4 Other Radioactivity Types: Double Beta Decay, Proton and Neutron Emissions, Exotic Radioactivity, Fission -- 1.4 X-rays. Auger Electrons -- References -- 2 Radioactivity: Decay Law, Definitions, and Units -- 2.1 Exponential Decay Law. Decay Constant, Half-Life and Mean-Life -- 2.2 Radioactive Activity and Units -- 2.2.1 Exponential Law of Activity -- 2.2.2 Becquerels and Curies -- 2.3 Radioactive Series -- 2.3.1 Bateman Equations -- 2.3.2 Transient and Secular Equilibria -- 2.4 Partial Activities. Branching Ratio and Intensity of Radiation -- 2.5 Decay Schemes -- References -- 3 Natural and Artificial Radioactivity -- 3.1 Primordial Radionuclides -- 3.1.1 Long-Lived Radionuclides -- 3.1.2 Natural Radioactive Series -- 3.2 Cosmogenic Radionuclides -- 3.2.1 Cosmic Radiation -- 3.2.2 Production of Radionuclides by Cosmic Radiation -- 3.3 Artificial Radionuclides -- 3.3.1 Some Historic Data -- 3.3.2 Production of Radionuclides in Accelerators -- 3.3.3 Production of Radionuclides in Nuclear Reactors -- References -- 4 Environmental Radioactivity -- 4.1 Presence of Natural Radioactivity in the Environment -- 4.1.1 Primordial Radionuclides -- 4.1.2 Cosmogenic Radionuclides -- 4.1.3 NORM Materials and Non-nuclear Industries.
4.2 Sources of Artificial Radionuclides -- 4.2.1 The Start of the Nuclear Era. The Bomb Pulse -- 4.2.2 Radioactive Fallout -- 4.2.3 Nuclear Fuel Reprocessing Plants -- 4.2.4 Other Nuclear Facilities and Activities: Nuclear Power Plants -- 4.2.5 Nuclear Accidents -- References -- 5 Levels and Behavior of Environmental Radioactivity -- 5.1 Dynamics of Radioactivity in the Environment -- 5.1.1 General Concepts of Radioecology -- 5.1.2 Radionuclide Speciation in the Environment -- 5.1.3 Exchange and Transport Processes. Transfer Parameters -- 5.1.4 Mathematical Modeling -- 5.2 Levels and Behavior of Radioactivity in the Atmosphere -- 5.2.1 Radioactivity in the Air -- 5.2.2 The Radon Problem -- 5.3 Levels and Behavior of Radioactivity in the Lithosphere. Radioactive Particles -- 5.3.1 Soils -- 5.3.2 Radioactive Particles -- 5.4 Levels and Behavior of Radioactivity in Fresh Waters -- 5.4.1 Rivers and Sediments -- 5.4.2 Lakes and Sediments -- 5.4.3 Groundwater -- 5.5 Levels and Behavior of Radioactivity in Oceans -- 5.5.1 Global Circulation -- 5.5.2 Seawater -- 5.5.3 Marine Sediments -- 5.6 Levels and Behavior of Radioactivity in the Biosphere -- 5.6.1 Plants, Animals -- 5.6.2 Seaweed and Other Marine Bioindicators -- 5.7 Levels and Behavior of Radioactivity in Foods -- 5.7.1 Drinking Water -- 5.7.2 Foodstuffs and Food Raw Materials -- References -- 6 Radiological Impact. Radiation Dosimetry -- 6.1 Radiation Dosimetry -- 6.1.1 Radiation Exposure, Absorbed Dose and Dose Equivalent: Magnitudes and Units -- 6.1.2 Effective and Committed Doses and Other Magnitudes -- 6.2 Biological Effects of Radioactivity -- 6.2.1 Stochastic and Deterministic Effects -- 6.2.2 Radiation Effects on Human Health -- 6.3 Radiological Impact -- 6.3.1 Radiation Protection Programs -- 6.3.2 Radiation Protection Regulations -- References.
7 Principles of Radiation Detection: Interaction of Radiation with Matter -- 7.1 Interaction of Gamma Radiation with Matter -- 7.1.1 Photoelectric Effect -- 7.1.2 Compton Effect -- 7.1.3 Pair Production -- 7.1.4 Attenuation and Absorption Coefficients -- 7.1.5 Designing Gamma Radiation Detectors -- 7.2 Interaction of Charged Particles with Matter -- 7.2.1 Ionization and Excitation -- 7.2.2 Stopping Power. The Bethe-Bloch Equation -- 7.2.3 Bremsstrahlung -- 7.2.4 Cherenkov Radiation -- 7.2.5 Range, Specific Ionization, and Bragg Curves -- 7.2.6 Designing Charged-Particle Detectors -- 7.3 Nuclear Reactions. Interaction of Neutrons with Matter -- 7.3.1 Nuclear Reactions with Neutrons -- 7.3.2 Path of Neutrons Through Matter -- 7.3.3 Designing Neutron Detectors -- References -- 8 Principles of Radiation Detection: Counting and Spectrometry -- 8.1 Introduction -- 8.2 Counting Efficiency -- 8.2.1 Absolute Efficiency -- 8.2.2 Partial Efficiencies. Photopeak Efficiency -- 8.3 Background of Detectors -- 8.3.1 Sources and Components -- 8.3.2 Background Corrections -- 8.4 Dead Time -- 8.4.1 Sources of Dead Time -- 8.4.2 Dead-Time Corrections -- 8.5 Energy Spectra -- 8.5.1 Components -- 8.5.2 Energy Resolution -- References -- 9 Gas Ionization Detectors -- 9.1 Physics of Gas Ionization Detectors -- 9.1.1 Ionization in Gases -- 9.1.2 Charge Transfer Reactions in Gases -- 9.1.3 Multiplication of Charge in Gases. Townsend Avalanche -- 9.2 Ionization Chamber -- 9.3 Proportional Counters -- 9.4 Geiger-Müller Counters -- 9.5 Radiation Counting and Spectrometry with Gas Ionization Detectors -- 9.6 Background in Gas Ionization Detectors -- References -- 10 Scintillation Detectors -- 10.1 Physics of Scintillation Detectors -- 10.1.1 Organic Scintillators -- 10.1.2 Inorganic Scintillators -- 10.1.3 Gas Scintillators -- 10.1.4 Photomultipliers.
10.2 Counting and Spectrometry with Scintillation Detectors -- 10.3 Gamma-Ray Spectrometry with Scintillation Detectors -- 10.3.1 Pulse Height Spectrum -- 10.3.2 Identification of Radionuclides and Activity Calculation -- 10.4 Counting and Spectrometry with Liquid Scintillation Detectors -- 10.4.1 Technical Aspects -- 10.4.2 Applications -- 10.5 Background in Scintillation Detectors -- References -- 11 Semiconductor Detectors -- 11.1 Physics of Semiconductor Detectors -- 11.1.1 Electron-hole Production -- 11.1.2 Energy Resolution -- 11.1.3 Types of Semiconductor Detectors -- 11.2 Gamma-Ray Spectrometry with Semiconductor Detectors -- 11.2.1 Pulse Height Spectrum -- 11.2.2 Identification of Radionuclides and Activity Calculation -- 11.3 Alpha- and Beta-Spectrometry with Semiconductor Detectors -- 11.3.1 Pulse Height Spectrum -- 11.3.2 Activity Determination -- 11.4 X-ray Spectrometry with Semiconductor Detectors -- 11.4.1 Pulse Height Spectrum -- 11.4.2 Activity Determination -- 11.5 Background in Semiconductor Detectors -- References -- 12 Dosimeters, Other Detectors, and Specific Designs -- 12.1 Dosimeters -- 12.1.1 Active Dosimeters -- 12.1.2 Passive Dosimeters -- 12.2 Track Detectors -- 12.3 ΔE-E Telescopes -- 12.4 Time-Of-Flight Spectrometers -- 12.5 Cherenkov Detectors -- 12.5.1 Cherenkov Threshold Counters -- 12.5.2 Cherenkov Differential Detectors -- 12.5.3 Cherenkov Circular Image Detectors -- References -- 13 Radiochemistry for Environmental Samples -- 13.1 Sampling Techniques -- 13.1.1 Solid Samples -- 13.1.2 Liquid Samples -- 13.1.3 Atmospheric Samples -- 13.1.4 Biological Samples -- 13.2 Sample Transport and Storage -- 13.3 Chemical Procedures -- 13.3.1 Preconcentration Processes -- 13.3.2 Separation and Purification Procedures -- 13.3.3 Source Preparation for Counting and Spectrometry -- 13.4 Yield Determination.
13.5 Efficiency Calibration of Radiation Counters and Spectrometers -- 13.5.1 Calibration Curves for Charged Particles -- 13.5.2 Calibration Curves for Gamma Radiation -- 13.6 Speciation Studies -- 13.7 Quality Assurance -- References -- 14 Principles of Low-Level Counting and Spectrometry -- 14.1 Need of Low-Level Counting Techniques (LLC) -- 14.1.1 Levels of Radioactivity in the Environment -- 14.1.2 Problems Requiring LLC -- 14.2 Counting Statistics -- 14.2.1 The Random Nature of Radioactivity -- 14.2.2 Uncertainty Calculations in Radioactivity Measurements -- 14.3 Figure of Merit (FOM) -- 14.3.1 Definition and FOM Equation -- 14.3.2 Analysis of the FOM Equation -- 14.4 Generalized Figure of Merit -- 14.4.1 Definition and Equation -- 14.4.2 Analysis of the Equation -- 14.5 Designing an LLC Experiment -- 14.5.1 Sampling Strategy -- 14.5.2 Counting or Spectrometry, or Both -- 14.6 Limit of Detection and Minimum Detectable Activity -- References -- 15 Low-Level Counting and Spectrometry Techniques -- 15.1 Techniques for Detector Background Suppression -- 15.1.1 Passive Shielding -- 15.1.2 Active Shielding -- 15.1.3 Underground Laboratories -- 15.2 Techniques for Increasing Counting Efficiency -- 15.2.1 External Counting and Spectrometry -- 15.2.2 Internal Counting and Spectrometry -- 15.2.3 Radiation Coincidence Techniques -- References -- 16 Principles of Mass Spectrometry -- 16.1 Limitations of Radiometric Methods. Need for Mass Spectrometry Techniques -- 16.1.1 Loss of Information by Counting Emitted Radiation -- 16.1.2 Counting Atoms Instead of Emitted Radiation -- 16.2 Basics of Mass Spectrometry -- 16.2.1 Electrostatic and Magnetic Rigidity -- 16.2.2 The Mass-Energy Plane -- 16.2.3 The Dynamic Approach -- 16.3 Low-Energy Mass Spectrometers: TIMS, SIMS, GDMS, RIMS, ICP‒MS -- 16.4 Applications to Environmental Radioactivity -- References -- 17 Principles of Particle Accelerators.
Sommario/riassunto: This textbook presents the principles and methods for the measurement of radioactivity in the environment. In this regard, specific low-level radiation counting and spectrometry or mass spectrometry techniques are discussed, including sources, distribution, levels and dynamics of radioactivity in nature. The author gives an accurate description of the fundamental concepts and laws of radioactivity as well as the different types of detectors and mass spectrometers needed for detection. Special attention is paid to scintillators, semiconductor detectors, and gas ionization detectors. In order to explain radiochemistry, some concepts about chemical separations are introduced as well. The book is meant for graduate and advanced undergraduate students in physics, chemistry or engineering oriented to environmental sciences, and to other disciplines where monitoring of the environment and its management is of great interest.
Titolo autorizzato: Detecting Environmental Radioactivity  Visualizza cluster
ISBN: 9783031099700
9783031099694
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910633923703321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Graduate texts in physics