Vai al contenuto principale della pagina
| Titolo: |
Compressed Sensing in Information Processing / / edited by Gitta Kutyniok, Holger Rauhut, Robert J. Kunsch
|
| Pubblicazione: | Cham : , : Springer International Publishing : , : Imprint : Birkhäuser, , 2022 |
| Edizione: | 1st ed. 2022. |
| Descrizione fisica: | 1 online resource (549 pages) |
| Disciplina: | 621.3678 |
| 621.3822 | |
| Soggetto topico: | Harmonic analysis |
| Mathematics - Data processing | |
| Signal processing | |
| Image processing | |
| Abstract Harmonic Analysis | |
| Computational Mathematics and Numerical Analysis | |
| Digital and Analog Signal Processing | |
| Image Processing | |
| Persona (resp. second.): | KutyniokGitta |
| RauhutHolger | |
| KunschRobert J. | |
| Nota di bibliografia: | Includes bibliographical references. |
| Nota di contenuto: | Hierarchical compressed sensing (G. Wunder) -- Proof Methods for Robust Low-Rank Matrix Recovery (T. Fuchs) -- New Challenges in Covariance Estimation: Multiple Structures and Coarse Quantization (J. Maly) -- Sparse Deterministic and Stochastic Channels: Identification of Spreading Functions and Covariances (Dae Gwan Lee) -- Analysis of Sparse Recovery Algorithms via the Replica Method (A. Bereyhi) -- Unbiasing in Iterative Reconstruction Algorithms for Discrete Compressed Sensing (F.H. Fischer) -- Recovery under Side Constraints (M. Pesavento) -- Compressive Sensing and Neural Networks from a Statistical Learning Perspective (E. Schnoor) -- Angular Scattering Function Estimation Using Deep Neural Networks (Y. Song) -- Fast Radio Propagation Prediction with Deep Learning (R. Levie) -- Active Channel Sparsification: Realizing Frequency Division Duplexing Massive MIMO with Minimal Overhead (M. B. Khalilsarai) -- Atmospheric Radar Imaging Improvements Using Compressed Sensing and MIMO (J. O. Aweda) -- Over-the-Air Computation for Distributed Machine Learning and Consensus in Large Wireless Networks (M. Frey) -- Information Theory and Recovery Algorithms for Data Fusion in Earth Observation (M. Fornasier) -- Sparse Recovery of Sound Fields Using Measurements from Moving Microphones (A. Mertins) -- Compressed Sensing in the Spherical Near-Field to Far-Field Transformation (C. Culotta-López). |
| Sommario/riassunto: | This contributed volume showcases the most significant results obtained from the DFG Priority Program on Compressed Sensing in Information Processing. Topics considered revolve around timely aspects of compressed sensing with a special focus on applications, including compressed sensing-like approaches to deep learning; bilinear compressed sensing - efficiency, structure, and robustness; structured compressive sensing via neural network learning; compressed sensing for massive MIMO; and security of future communication and compressive sensing. |
| Titolo autorizzato: | Compressed sensing in information processing ![]() |
| ISBN: | 3-031-09745-9 |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9910619276503321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |