Vai al contenuto principale della pagina

Postharvest biology and nanotechnology of fruits, vegetables and flowers / / edited by Gopinadhan Paliyath [and five others]



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Postharvest biology and nanotechnology of fruits, vegetables and flowers / / edited by Gopinadhan Paliyath [and five others] Visualizza cluster
Pubblicazione: Hoboken, New Jersey : , : Wiley Blackwell, , 2019
Edizione: 2nd ed.
Descrizione fisica: 1 online resource (418 pages)
Disciplina: 631.582
Soggetto topico: Crops - Postharvest technology
Persona (resp. second.): PaliyathGopinadhan
Nota di contenuto: Intro -- Title Page -- Copyright Page -- Contents -- Contributors -- Preface -- Chapter 1 Enhancing Food Security Through Postharvest Technology: Current and Future Perspectives -- 1.1 Introduction -- 1.2 Food Security: Changing Paradigms Linked to Food Quality and NCD Challenges -- 1.2.1 Population -- 1.2.2 Climate Change and Weather Patterns -- 1.2.3 Food, Water, and Energy Security -- 1.2.4 Choices in Increasing the World's Food Supply -- 1.2.5 Saving More of the Food that We Already Produce -- 1.2.6 Nanotechnology in Agriculture and Food -- 1.2.7 Postharvest Technologies -- References -- Links -- Chapter 2 Ripening and Senescence of Fleshy Fruits -- 2.1 Introduction -- 2.2 Fruit Growth and Development -- 2.3 Climacteric and Non‐climacteric Fruits -- 2.4 Metabolic and Physiological Changes During Fruit Ripening -- 2.4.1 Carbon Metabolism -- 2.4.2 Carotenoids and Flavonoids -- 2.4.3 Aromatic Compounds -- 2.5 Regulation of Fruit Ripening -- 2.6 Transcriptional Regulation of Fruit Ripening -- 2.7 Nitric Oxide and ROS Regulate Fruit Ripening and Senescence -- 2.8 Epigenetic Modulation of Ripening Regulators -- 2.9 Concluding Remarks -- Author Contribution and Acknowledgments -- References -- Chapter 3 Ethylene Signal Transduction During Fruit Ripening and Senescence -- 3.1 Introduction -- 3.2 Ethylene Biosynthesis -- 3.3 Membrane Lipid Catabolism during Ripening and Senescence -- 3.4 Phospholipase D and its Role in Plant Developmental Processes -- 3.4.1 PLD Gene Family and Classification -- 3.4.2 PLD Domain Architecture -- 3.4.3 Subcellular Localization of PLD -- 3.4.4 Changes in PLD During Growth, Development, and Ripening -- 3.5 Role of PLD in Growth and Development -- 3.5.1 Role of PLD During Nutrient Deficiency -- 3.5.2 Role of PLD in Hyperosmotic Stress -- 3.5.3 PLD Response During Wounding -- 3.5.4 Role of PLD in Pathogenesis Responses.
3.5.5 PLD Activation by Oxidative Stress -- 3.5.6 PLD Regulation During Ripening and Senescence -- 3.6 Signal Transduction Sequences During Ripening -- 3.6.1 Ethylene Signaling -- 3.6.2 PLD‐regulated Lipid Signaling -- 3.7 Function and Roles of Biomembrane in Signaling -- 3.7.1 Phosphatidylinositol Metabolism in Senescence -- 3.8 Phosphatidylinositol 3‐Kinase: A Potential Link in Ethylene Signal Transduction -- 3.8.1 Phosphatidylinositol 3‐Kinases in Plant Growth and Development -- 3.8.2 Phosphatidylinositol 3‐Kinase: Intermediaries in Ethylene Signal Transduction -- 3.9 C2 Domains of PLD and PI3K -- 3.9.1 C2 Domain of PLD -- 3.9.2 C2 Domain of PI3K -- Acknowledgment -- References -- Chapter 4 Preharvest and Postharvest Technologies Based on Hexanal: An Overview -- 4.1 Introduction -- 4.2 Ripening and Senescence -- 4.3 Changes in Cell Membrane Structure and Properties -- 4.3.1 Phospholipid Catabolism -- 4.3.2 Phospholipase D -- 4.4 Hexanal‐based Technologies -- 4.5 Compositions for Preharvest Sprays and Postharvest Dips of Fruits and Vegetables -- 4.6 Mechanism of Action of Hexanal -- 4.7 Summary of Treatments and Effects -- References -- Chapter 5 Nitric Oxide Signaling in Plants -- 5.1 Introduction -- 5.2 Chemical Features of NO -- 5.3 Endogenous Production of NO in Plants -- 5.4 NO, Redox Balance, and Stress Tolerance -- 5.4.1 Biotic Stress -- 5.4.2 Abiotic Stress -- 5.4.3 Redox Balance -- 5.5 The Crosstalk between NO and Phytohormones -- 5.6 Conclusion and Prospects -- Acknowledgments -- References -- Chapter 6 Postharvest Uses of Ozone Application in Fresh Horticultural Produce -- 6.1 Introduction -- 6.2 History -- 6.3 Properties and Reactions of Ozone -- 6.3.1 Physical Properties -- 6.3.2 Chemical Properties -- 6.3.3 Biocidal Property -- 6.4 Hazard Regulations -- 6.5 Ozone Generation and Its Application -- 6.5.1 Corona Discharge Method.
6.5.2 Electrochemical Method -- 6.5.3 Application of Ozone -- 6.6 Effect of Ozone Application on Ethylene Levels and Respiration Rates -- 6.7 Effect of Ozone Application on Fruit Quality -- 6.7.1 Storage at Ambient Temperature -- 6.7.2 Cold Storage -- 6.7.3 Controlled Atmosphere Storage -- 6.7.4 Modified Atmosphere Packaging -- 6.7.5 1‐Methylcyclopropene Application Combined with Ozone Treatment -- 6.8 Effect of Ozone Application on Surface Microbial Population and Storage Life of Fruits and Vegetables -- 6.8.1 Effect of Ozone Treatment on Microbial Population -- 6.8.2 Effect of Ozone Treatment on Storage Life -- 6.9 Limitations and Negative Impacts of Ozone Application -- 6.10 Conclusions -- References -- Chapter 7 Active and Intelligent Packaging for Reducing Postharvest Losses of Fruits and Vegetables -- 7.1 Introduction -- 7.2 Strategies Used in Preservation of Fruits and Vegetables -- 7.3 New Developments in Fruit and Vegetable Packaging -- 7.3.1 Microperforated Active MA Packaging and Its Modeling -- 7.3.2 Packaging Materials: Modulation of Barrier Properties -- 7.3.3 Gas‐releasing Films for Developing Antimicrobial Packaging Systems -- 7.3.4 Volatile Organic Compounds: Quality Markers of MA‐Packaged Products -- 7.4 Conclusions -- References -- Chapter 8 Application of Hexanal‐containing Compositions and Its Effect on Shelf‐life and Quality of Banana Varieties in Kenya -- 8.1 Introduction -- 8.2 Preharvest and Postharvest Hexanal Treatments of Banana -- 8.2.1 Fruit Retention and Shelf‐life -- 8.2.2 Peel Firmness -- 8.2.3 Fruit Quality Parameters -- Acknowledgment -- References -- Chapter 9 Hexanal Compositions for Enhancing Shelf‐life and Quality in Papaya -- 9.1 Introduction -- 9.2 Papaya Fruit -- 9.2.1 Cultivation -- 9.2.2 Production and Economy -- 9.2.3 Consumption -- 9.2.4 Nutritional Value -- 9.3 Importance of Papaya in Food Security.
9.4 Postharvest Losses -- 9.5 Storage of Papaya -- 9.6 Fruit Quality and Shelf‐life Enhancement -- 9.7 Hexanal‐based Technologies for Papaya -- Acknowledgment -- References -- Chapter 10 Effect of Hexanal Composition Treatment on Wine Grape Quality -- 10.1 Introduction -- 10.1.1 Wine Grapes: Production Factors -- 10.1.2 Quality‐determining Features of Wine Grapes -- 10.2 Experimental Protocols -- 10.2.1 Growth Conditions -- 10.2.2 Production of Inoculum -- 10.2.3 Wine Processing -- 10.2.4 Quality Attributes of Musts and Wines -- 10.3 Observations -- 10.3.1 Properties of Must and Wine -- 10.3.2 Wine Quality Attributes -- 10.3.3 Surface Morphology of Grapes -- References -- Chapter 11 Benefits of Application of Hexanal Compositions on Apples -- 11.1 Introduction -- 11.2 Preharvest Spray of Hexanal Compositions in Reducing Apple Fruit Drop -- 11.3 Prevention of Superficial Scald in Apples -- 11.4 Effects of Preharvest Spray Treatment of Honeycrisp Apples with Hexanal Formulation -- 11.4.1 Postharvest Quality of Honeycrisp -- References -- Chapter 12 Preharvest Spray Application of Blueberry Fruits with Hexanal Formulations Improves Fruit Shelf‐life and Quality -- 12.1 Introduction -- 12.2 Quality‐determining Features of Berries -- 12.3 Common Blueberry Postharvest Issues -- 12.3.1 Ideal Storage Conditions -- 12.3.2 Postharvest Technologies -- 12.4 Experimental Protocols -- 12.4.1 Preharvest Spray Applications -- 12.4.2 Postharvest Storage of Blueberry -- 12.4.3 Fruit Quality Analysis -- 12.4.4 Statistical Analysis -- 12.5 Observations -- 12.5.1 Fruit Quality -- 12.5.2 Physiological Weight Loss and Quality of Stored Fruit -- References -- Chapter 13 Improving Shelf‐life and Quality of Sweet Cherry (Prunus avium L.) by Preharvest Application of Hexanal Compositions -- 13.1 Introduction -- 13.2 Quality‐determining Features of Sweet Cherries.
13.3 Technologies to Enhance Postharvest Quality of Sweet Cherry -- 13.4 Experimental Protocols -- 13.4.1 Preharvest Spray Treatments -- 13.4.2 Postharvest Treatments -- 13.5 Observations -- 13.5.1 Effect of Preharvest and Postharvest Treatments on Sweet Cherry Fruit Quality -- 13.5.2 Effect of Preharvest and Postharvest Treatments on Total Polyphenolic Content and Anthocyanin Components -- 13.5.3 Antioxidant Enzyme Activities -- References -- Chapter 14 Hexanal Effects on Greenhouse Vegetables -- 14.1 Introduction -- 14.2 Postharvest Losses and Issues -- 14.3 Current Technologies Used for Storage -- 14.3.1 Bell Pepper -- 14.3.2 Tomatoes -- 14.4 Experimental Protocols -- 14.4.1 Preharvest Application of Hexanal‐Containing Sprays on Greenhouse Tomato Fruit -- 14.4.2 Postharvest Application of Hexanal and EFF Dip Treatments of Tomato Fruit -- 14.4.3 Postharvest Application of Hexanal Vapor on Bell Pepper Fruit -- 14.4.4 Analysis of Quality Parameters -- 14.5 Observations -- 14.5.1 Effect of Preharvest Spray Treatments with Hexanal Formulations on Quality Parameters of Tomatoes -- 14.5.2 Effect of Postharvest Dip Treatments in Hexanal Formulations on Quality Parameters of Tomatoes -- 14.6 Effect of Postharvest Hexanal Vapor Application on Bell Pepper Fruit Shelf‐life, Ripening, and Postharvest Quality -- 14.7 Conclusion -- References -- Chapter 15 Reduction of Preharvest and Postharvest Losses of Sweet Orange (Citrus sinensis L. Osberck) Using Hexanal in Eastern Tanzania -- 15.1 Introduction -- 15.2 Socioeconomic Importance and Production of Sweet Orange in Tanzania -- 15.3 Constraints to Sweet Orange Production and Postharvest Handling -- 15.4 Field and Laboratory Tests on Effectiveness of Hexanal -- 15.4.1 Effects of Preharvest Treatment with Hexanal on Preharvest Fruit Drop, Marketability, and Pest Damage of Sweet Oranges.
15.4.2 Effect of Postharvest Treatment with Hexanal Formulation on Postharvest Quality of Orange Fruit.
Titolo autorizzato: Postharvest biology and nanotechnology of fruits, vegetables and flowers  Visualizza cluster
ISBN: 1-119-28946-7
1-119-28945-9
1-119-28947-5
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910555181503321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: New York Academy of Sciences