Vai al contenuto principale della pagina

Wireless RF energy transfer in the massive IoT era : towards sustainable zero-energy networks / / Onel L. A. López, Hirley Alves



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: López Onel L. A. Visualizza persona
Titolo: Wireless RF energy transfer in the massive IoT era : towards sustainable zero-energy networks / / Onel L. A. López, Hirley Alves Visualizza cluster
Pubblicazione: Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2022]
©2022
Descrizione fisica: 1 online resource (251 pages)
Disciplina: 621.319
Soggetto topico: Wireless power transmission
Internet of things - Power supply
Persona (resp. second.): AlvesHirley
Nota di contenuto: Intro -- Wireless RF Energy Transfer in the Massive IoT Era -- Contents -- Preface -- Acknowledgments -- Acronyms -- Mathematical Notation -- About the Companion Website -- 1 Massive IoT -- 1.1 Selected Use-cases and Scenarios -- 1.2 Key Technologies -- 1.3 Requirements and KPIs -- 1.4 Key Enablers -- 1.4.1 Holistic and Globally Scalable Massive IoT -- 1.4.2 Sustainable Connectivity -- 1.5 Final Remarks and Discussions -- 2 Wireless RF Energy Transfer: An Overview -- 2.1 Energy Harvesting -- 2.1.1 EH Sources -- 2.1.2 RF Energy Transfer -- 2.2 RF-EH Performance -- 2.2.1 Analytical Models -- 2.2.2 State-of-the-art on RF EH -- 2.3 RF-EH IoT -- 2.3.1 Architectures of IoT RF EH Networks -- 2.3.2 Green WET -- 2.3.3 WIT-WET Layouts -- 2.3.4 RF EH in IoT Use Cases -- 2.4 Enabling Efficient RF-WET -- 2.4.1 Energy Beamforming -- 2.4.2 CSI-limited Schemes -- 2.4.3 Distributed Antenna System -- 2.4.4 Enhancements in Hardware and Medium -- 2.4.5 New Spectrum Opportunities -- 2.4.6 Resource Scheduling and Optimization -- 2.4.7 Distributed Ledger Technology -- 2.5 Final Remarks -- 3 Ambient RF EH -- 3.1 Motivation and Overview -- 3.1.1 Hybrid of RF-EH and Power Grid -- 3.1.2 Energy Usage Protocols -- 3.1.3 On Efficient Ambient RF-RH Designs -- 3.2 Measurement Campaigns -- 3.2.1 Greater London (2012) -- 3.2.2 Diyarbakir (2014) -- 3.2.3 Flanders (2017-2019) -- 3.2.4 Other Measurements -- 3.3 Energy Arrival Modeling -- 3.3.1 Based on Arbitrary Distributions -- 3.3.2 Based on Stochastic Geometry -- 3.4 A Stochastic Geometry-based Study -- 3.4.1 System Model and Assumptions -- 3.4.2 Energy Coverage Probability -- 3.4.3 Average Harvested Energy -- 3.4.4 Meta-distribution of Harvested Energy -- 3.4.5 Numerical Results -- 3.5 Final Considerations -- 4 Efficient Schemes for WET -- 4.1 EH from Dedicated WET -- 4.2 Energy Beamforming -- 4.2.1 Low-complexity EB Design.
4.2.2 CSI-limited Energy Beamforming -- 4.2.3 Performance Analysis -- 4.3 CSI-free Multi-antenna Techniques -- 4.3.1 System Model and Assumptions -- 4.3.2 Positioning-agnostic CSI-free WET -- 4.3.3 Positioning-aware CSI-free WET -- 4.4 On the Massive WET Performance -- 4.5 Final Considerations -- 5 Multi-PB Massive WET -- 5.1 On the PBs Deployment -- 5.1.1 Positioning-aware Deployments -- 5.1.2 Positioning-agnostic Deployments -- 5.2 Multi-antenna Energy Beamforming -- 5.2.1 Centralized Energy Beamforming -- 5.2.2 Distributed Energy Beamforming -- 5.2.3 Available RF Energy -- 5.3 Distributed CSI-free WET -- 5.3.1 SA, AA-IS and RPS-EMW -- 5.3.2 AA-SS -- 5.3.3 RAB -- 5.3.4 Positioning-aware CSI-free Schemes -- 5.3.5 Numerical Examples -- 5.4 On the Deployment Costs -- 5.5 Final Remarks -- 6 Wireless-powered Communication Networks -- 6.1 WPCN Models -- 6.2 Reliable Single-user WPCN -- 6.2.1 Harvest-then-transmit (HTT) -- 6.2.2 Allowing Energy Accumulation -- 6.2.3 HTT versus FEIPC -- 6.3 Multi-user Resource Allocation -- 6.3.1 Signal Model -- 6.3.2 Problem Formulation -- 6.3.3 Optimization Framework -- 6.3.4 TDMA versus SDMA -- 6.4 Cognitive MAC -- 6.4.1 Time Sharing and Scheduling -- 6.4.2 MAC Protocol at the Device Side -- 6.4.3 MAC Protocol at the HAP Side -- 6.5 Final Remarks -- 7 Simultaneous Wireless Information and Power Transfer -- 7.1 SWIPT Schemes -- 7.2 Separate EH and ID Receivers -- 7.2.1 Problem Formulation -- 7.2.2 Optimal Solution -- 7.2.3 Performance Results -- 7.3 Co-located EH and ID Receivers -- 7.3.1 Time Switching -- 7.3.2 Power splitting -- 7.3.3 TS versus PS -- 7.4 Enablers for Efficient SWIPT -- 7.4.1 Waveform Optimization -- 7.4.2 Multicarrier SWIPT -- 7.4.3 Cooperative Relaying -- 7.4.4 Interference Exploitation -- 7.4.5 Artificial Intelligence -- 7.5 Final Considerations -- 8 Final Notes -- 8.1 Summary.
8.2 Future Research Directions -- A A Brief Overview on Finite Block Length Coding -- A.1 Finite Block Length Model -- B Distribution of Transferred RF Energy Under CSI-free WET -- B.1 Proof of Theorem 4.2 -- B.2 Proof of Theorem 4.4 -- C Clustering Algorithms -- C.1 Partitioning Methods -- C.1.1 K-Means -- C.1.2 K-Medoids -- C.1.3 K-Modes -- C.2 Hierarchical Methods -- C.3 Other Methods -- C.4 Pre-processing -- D Required SNR for a Target Decoding Error Probability (Proof of Theorem 6.1) -- D.1 On the Convergence of Algorithm 3 -- Bibliography -- Index -- EULA.
Titolo autorizzato: Wireless RF energy transfer in the massive IoT era  Visualizza cluster
ISBN: 1-119-71869-4
1-119-71870-8
1-119-71868-6
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910555131203321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: IEEE Press Ser.