Vai al contenuto principale della pagina

Multi-Objective Optimization using Artificial Intelligence Techniques / / by Seyedali Mirjalili, Jin Song Dong



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Mirjalili Seyedali Visualizza persona
Titolo: Multi-Objective Optimization using Artificial Intelligence Techniques / / by Seyedali Mirjalili, Jin Song Dong Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Edizione: 1st ed. 2020.
Descrizione fisica: 1 online resource (xi, 58 pages)
Disciplina: 006.3
Soggetto topico: Computational intelligence
Machine learning
Operations research
Decision making
Computational Intelligence
Machine Learning
Operations Research/Decision Theory
Persona (resp. second.): DongJin Song
Sommario/riassunto: This book focuses on the most well-regarded and recent nature-inspired algorithms capable of solving optimization problems with multiple objectives. Firstly, it provides preliminaries and essential definitions in multi-objective problems and different paradigms to solve them. It then presents an in-depth explanations of the theory, literature review, and applications of several widely-used algorithms, such as Multi-objective Particle Swarm Optimizer, Multi-Objective Genetic Algorithm and Multi-objective GreyWolf Optimizer Due to the simplicity of the techniques and flexibility, readers from any field of study can employ them for solving multi-objective optimization problem. The book provides the source codes for all the proposed algorithms on a dedicated webpage.
Titolo autorizzato: Multi-Objective Optimization using Artificial Intelligence Techniques  Visualizza cluster
ISBN: 3-030-24835-6
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910484985003321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: SpringerBriefs in Computational Intelligence, . 2625-3704