Vai al contenuto principale della pagina
Autore: | Mohammed Salah-Eldin <1946-> |
Titolo: | The stable manifold theorem for semilinear stochastic evolution equations and stochastic partial differential equations / / Salah-Eldin A. Mohammed, Tusheng Zhang, Huaizhong Zhao |
Pubblicazione: | Providence, Rhode Island : , : American Mathematical Society, , [2008] |
©2008 | |
Descrizione fisica: | 1 online resource (120 p.) |
Disciplina: | 519.2 |
Soggetto topico: | Stochastic partial differential equations |
Stochastic integral equations | |
Manifolds (Mathematics) | |
Evolution equations | |
Soggetto genere / forma: | Electronic books. |
Persona (resp. second.): | ZhangTusheng <1963-> |
ZhaoHuaizhong <1964-> | |
Note generali: | "November 2008, volume 196, number 917 (fourth of 5 numbers )." |
Nota di bibliografia: | Includes bibliographical references (pages 103-105). |
Nota di contenuto: | ""Contents""; ""Introduction""; ""Part 1. The stochastic semiflow""; ""Â1.1 Basic concepts""; ""Â1.2 Flows and cocycles of semilinear see's""; ""(a) Linear see's""; ""(b) Semilinear see's""; ""Â1.3 Semilinear spde's: Lipschitz nonlinearity""; ""Â1.4 Semilinear spde's: Non- Lipschitz nonlinearity""; ""(a) Stochastic reaction diffusion equations""; ""(b) Burgers equation with additive noise""; ""Part 2. Existence of stable and unstable manifolds""; ""Â2.1 Hyperbolicity of a stationary trajectory""; ""Â2.2 The nonlinear ergodic theorem"" |
""Â2.3 Proof of the local stable manifold theorem""""Â2.4 The local stable manifold theorem for see's and spde's""; ""(a) See's: Additive noise""; ""(b) Semilinear see's: Linear noise""; ""(c) Semilinear parabolic spde's: Lipschitz nonlinearity""; ""(d) Stochastic reaction diffusion equations: Dissipative nonlinearity""; ""(e) Stochastic Burgers equation: Additive noise""; ""Acknowledgments""; ""Bibliography"" | |
Titolo autorizzato: | The stable manifold theorem for semilinear stochastic evolution equations and stochastic partial differential equations |
ISBN: | 1-4704-0523-7 |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910480868803321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |