Vai al contenuto principale della pagina

Hilbert modular forms : mod p and p-adic aspects / / F. Andreatta, E.Z. Goren



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Andreatta F (Fabrizio), <1972-> Visualizza persona
Titolo: Hilbert modular forms : mod p and p-adic aspects / / F. Andreatta, E.Z. Goren Visualizza cluster
Pubblicazione: Providence, Rhode Island : , : American Mathematical Society, , [2005]
©2005
Descrizione fisica: 1 online resource (114 p.)
Disciplina: 510 s
516.3/5
Soggetto topico: Arithmetical algebraic geometry
Hilbert modular surfaces
Forms, Modular
Moduli theory
Soggetto genere / forma: Electronic books.
Persona (resp. second.): GorenEyal Z <1963-> (Eyal Zvi)
Note generali: "Volume 173, number 819 (fourth of 5 numbers)."
Nota di bibliografia: Includes bibliographical references (pages 98-100).
Nota di contenuto: ""Contents""; ""1. Introduction""; ""2. Notations""; ""3. Moduli spaces of abelian varieties with real multiplication""; ""4. Properties of G""; ""5. Hilbert modular forms""; ""6. The q-expansion map""; ""7. The partial Hasse invariants""; ""8. Reduceness of the partial Hasse invariants""; ""9. A compactification of m(k, Î?[sub(pN)])[sup(Kum)]""; ""10. Congruences mod p[sup(n)] and Serre's p-adic modular forms""; ""11. Katz's p-adic Hilbert modular forms""; ""12. The operators Î?[sub(B,i)]""; ""13. The operator V""; ""14. The operator U""; ""15. Applications to filtrations of modular forms""
""16. Theta cycles and parallel filtration (inert case)""""17. Functorialities""; ""18. Integrality and congruences for values of zeta functions""; ""19. Numerical examples""; ""20. Comments regarding values of zeta functions""; ""21. References""
Titolo autorizzato: Hilbert modular forms  Visualizza cluster
ISBN: 1-4704-0420-6
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910480515803321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Memoirs of the American Mathematical Society ; ; no. 819.