Vai al contenuto principale della pagina

Language Identification Using Spectral and Prosodic Features / / by K. Sreenivasa Rao, V. Ramu Reddy, Sudhamay Maity



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Rao K. Sreenivasa (Krothapalli Sreenivasa) Visualizza persona
Titolo: Language Identification Using Spectral and Prosodic Features / / by K. Sreenivasa Rao, V. Ramu Reddy, Sudhamay Maity Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015
Edizione: 1st ed. 2015.
Descrizione fisica: 1 online resource (106 p.)
Disciplina: 409.54
Soggetto topico: Signal processing
Image processing
Speech processing systems
Natural language processing (Computer science)
Computational linguistics
Signal, Image and Speech Processing
Natural Language Processing (NLP)
Computational Linguistics
Persona (resp. second.): ReddyV. Ramu
MaitySudhamay
Note generali: Description based upon print version of record.
Nota di bibliografia: Includes bibliographical references at the end of each chapters.
Nota di contenuto:  Introduction.- Literature Review -- Language Identification using Spectral Features -- Language Identification using Prosodic Features -- Summary and Conclusions -- Appendix A: LPCC Features -- Appendix B: MFCC Features --  Appendix C: Gaussian Mixture Model (GMM).
Sommario/riassunto: This book discusses the impact of spectral features extracted from frame level, glottal closure regions, and pitch-synchronous analysis on the performance of language identification systems. In addition to spectral features, the authors explore prosodic features such as intonation, rhythm, and stress features for discriminating the languages. They present how the proposed spectral and prosodic features capture the language specific information from two complementary aspects, showing how the development of language identification (LID) system using the combination of spectral and prosodic features will enhance the accuracy of identification as well as improve the robustness of the system. This book provides the methods to extract the spectral and prosodic features at various levels, and also suggests the appropriate models for developing robust LID systems according to specific spectral and prosodic features. Finally, the book discuss about various combinations of spectral and prosodic features, and the desired models to enhance the performance of LID systems.
Titolo autorizzato: Language Identification Using Spectral and Prosodic Features  Visualizza cluster
ISBN: 3-319-17163-1
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910299693503321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: SpringerBriefs in Speech Technology, Studies in Speech Signal Processing, Natural Language Understanding, and Machine Learning, . 2191-737X