Vai al contenuto principale della pagina

Algorithmic differentiation in finance explained / / by Marc Henrard



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Henrard Marc Visualizza persona
Titolo: Algorithmic differentiation in finance explained / / by Marc Henrard Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing : , : Imprint : Palgrave Macmillan, , 2017
Edizione: 1st ed. 2017.
Descrizione fisica: 1 online resource (XIII, 103 p. 7 illus.)
Disciplina: 332
Soggetto topico: Financial engineering
Economics, Mathematical 
Financial Engineering
Quantitative Finance
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Chapter1 Introduction -- Chapter2 The Principles of Algorithmic Differentiation -- Chapter3 Applications to Finance -- Chapter4 Automated Algorithmic differentiation -- Chapter5 Derivatives to Non-inputs and Non-derivatives to Inputs -- Chapter 6 Calibration.
Sommario/riassunto: This book provides the first practical guide to the function and implementation of algorithmic differentiation in finance. Written in a highly accessible way, Algorithmic Differentiation Explained will take readers through all the major applications of AD in the derivatives setting with a focus on implementation.  Algorithmic Differentiation (AD) has been popular in engineering and computer science, in areas such as fluid dynamics and data assimilation for many years.  Over the last decade, it has been increasingly (and successfully) applied to financial risk management, where it provides an efficient way to obtain financial instrument price derivatives with respect to the data inputs. Calculating derivatives exposure across a portfolio is no simple task.  It requires many complex calculations and a large amount of computer power, which in prohibitively expensive and can be time consuming.  Algorithmic differentiation techniques can be very successfully in computing Greeks and sensitivities of a portfolio with machine precision. Written by a leading practitioner who works and programmes AD, it offers a practical analysis of all the major applications of AD in the derivatives setting and guides the reader towards implementation.  Open source code of the examples is provided with the book, with which readers can experiment and perform their own test scenarios without writing the related code themselves.
Titolo autorizzato: Algorithmic Differentiation in Finance Explained  Visualizza cluster
ISBN: 3-319-53979-5
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910255043403321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Financial Engineering Explained