Vai al contenuto principale della pagina
Autore: | Faltings Gerd |
Titolo: | Lectures on the Arithmetic Riemann-Roch Theorem. (AM-127), Volume 127 / / Gerd Faltings |
Pubblicazione: | Princeton, NJ : , : Princeton University Press, , [2016] |
©1992 | |
Descrizione fisica: | 1 online resource (113 pages) |
Disciplina: | 516.3/5 |
Soggetto topico: | Geometry, Algebraic |
Riemann-Roch theorems | |
Soggetto non controllato: | Addition |
Adjoint | |
Alexander Grothendieck | |
Algebraic geometry | |
Analytic torsion | |
Arakelov theory | |
Asymptote | |
Asymptotic expansion | |
Asymptotic formula | |
Big O notation | |
Cartesian coordinate system | |
Characteristic class | |
Chern class | |
Chow group | |
Closed immersion | |
Codimension | |
Coherent sheaf | |
Cohomology | |
Combination | |
Commutator | |
Computation | |
Covariant derivative | |
Curvature | |
Derivative | |
Determinant | |
Diagonal | |
Differentiable manifold | |
Differential form | |
Dimension (vector space) | |
Divisor | |
Domain of a function | |
Dual basis | |
E6 (mathematics) | |
Eigenvalues and eigenvectors | |
Embedding | |
Endomorphism | |
Exact sequence | |
Exponential function | |
Generic point | |
Heat kernel | |
Injective function | |
Intersection theory | |
K-group | |
Levi-Civita connection | |
Line bundle | |
Linear algebra | |
Local coordinates | |
Mathematical induction | |
Morphism | |
Natural number | |
Neighbourhood (mathematics) | |
Parameter | |
Projective space | |
Pullback (category theory) | |
Pullback (differential geometry) | |
Pullback | |
Riemannian manifold | |
Riemann–Roch theorem | |
Self-adjoint operator | |
Smoothness | |
Sobolev space | |
Stochastic calculus | |
Summation | |
Supertrace | |
Theorem | |
Transition function | |
Upper half-plane | |
Vector bundle | |
Volume form | |
Altri autori: | ZhangShouwu |
Nota di bibliografia: | Includes bibliographical references. |
Nota di contenuto: | Frontmatter -- TABLE OF CONTENTS -- INTRODUCTION -- LIST OF SYMBOLS -- LECTURE 1. CLASSICAL RIEMANN-ROCH THEOREM -- LECTURE 2. CHERN CLASSES OF ARITHMETIC VECTOR BUNDLES -- LECTURE 3. LAPLACIANS AND HEAT KERNELS -- LECTURE 4. THE LOCAL INDEX THEOREM FOR DIRAC OPERATORS -- LECTURE 5. NUMBER OPERATORS AND DIRECT IMAGES -- LECTURE 6. ARITHMETIC RIEMANN-ROCH THEOREM -- LECTURE 7. THE THEOREM OF BISMUT-VASSEROT -- REFERENCES |
Sommario/riassunto: | The arithmetic Riemann-Roch Theorem has been shown recently by Bismut-Gillet-Soul. The proof mixes algebra, arithmetic, and analysis. The purpose of this book is to give a concise introduction to the necessary techniques, and to present a simplified and extended version of the proof. It should enable mathematicians with a background in arithmetic algebraic geometry to understand some basic techniques in the rapidly evolving field of Arakelov-theory. |
Titolo autorizzato: | Lectures on the Arithmetic Riemann-Roch Theorem. (AM-127), Volume 127 |
ISBN: | 1-4008-8247-8 |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910154744103321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |