Vai al contenuto principale della pagina

Stochastic PDE's and Kolmogorov equations in infinite dimensions : lectures given at the 2nd Session of the Centro Internazionale Matematico Estivo (C.I.M.E.) held in Cetraro, Italy, August 24 - September 1, 1998 / / N. V. Krylov, M. Rockner, J. Zabczyk ; editor, G. Da Prato



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Krylov N. V (Nikolaĭ Vladimirovich) Visualizza persona
Titolo: Stochastic PDE's and Kolmogorov equations in infinite dimensions : lectures given at the 2nd Session of the Centro Internazionale Matematico Estivo (C.I.M.E.) held in Cetraro, Italy, August 24 - September 1, 1998 / / N. V. Krylov, M. Rockner, J. Zabczyk ; editor, G. Da Prato Visualizza cluster
Pubblicazione: ©1999
Berlin : , : Springer, , [1999]
Edizione: 1st ed. 1999.
Descrizione fisica: 1 online resource (XII, 244 p.)
Disciplina: 519.2
Soggetto topico: Stochastic partial differential equations
Persona (resp. second.): RöcknerMichael <1956->
ZabczykJerzy
Da PratoGiuseppe
Note generali: Bibliographic Level Mode of Issuance: Monograph
Nota di contenuto: N.V. Krylov: On Kolmogorov's equations for finite dimensional diffusions: Solvability of Ito's stochastic equations; Markov property of solution; Conditional version of Kolmogorov's equation; Differentiability of solutions of stochastic equations with respect to initial data; Kolmogorov's equations in the whole space; Some Integral approximations of differential operators; Kolmogorov's equations in domains -- M. Roeckner: LP-analysis of finite and infinite dimensional diffusion operators: Solution of Kolmogorov equations via sectorial forms; Symmetrizing measures; Non-sectorial cases: perturbations by divergence free vector fields; Invariant measures: regularity, existence and uniqueness; Corresponding diffusions and relation to Martingale problems -- J. Zabczyk: Parabolic equations on Hilbert spaces: Heat equation; Transition semigroups; Heat equation with a first order term; General parabolic equations; Regularity and Quiqueness; Parabolic equations in open sets; Applications.
Sommario/riassunto: Kolmogorov equations are second order parabolic equations with a finite or an infinite number of variables. They are deeply connected with stochastic differential equations in finite or infinite dimensional spaces. They arise in many fields as Mathematical Physics, Chemistry and Mathematical Finance. These equations can be studied both by probabilistic and by analytic methods, using such tools as Gaussian measures, Dirichlet Forms, and stochastic calculus. The following courses have been delivered: N.V. Krylov presented Kolmogorov equations coming from finite-dimensional equations, giving existence, uniqueness and regularity results. M. Röckner has presented an approach to Kolmogorov equations in infinite dimensions, based on an LP-analysis of the corresponding diffusion operators with respect to suitably chosen measures. J. Zabczyk started from classical results of L. Gross, on the heat equation in infinite dimension, and discussed some recent results.
Titolo autorizzato: Stochastic PDE's and Kolmogorov equations in infinite dimensions  Visualizza cluster
ISBN: 3-540-48161-3
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910146311803321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Lecture notes in mathematics (Springer-Verlag) ; ; 1715.