Vai al contenuto principale della pagina
| Titolo: |
Asymptotic Combinatorics with Applications to Mathematical Physics : A European Mathematical Summer School held at the Euler Institute, St. Petersburg, Russia, July 9-20, 2001 / / edited by Anatoly M. Vershik
|
| Pubblicazione: | Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2003 |
| Edizione: | 1st ed. 2003. |
| Descrizione fisica: | 1 online resource (X, 250 p.) |
| Disciplina: | 510 s |
| 530.15/16 | |
| Soggetto topico: | Applied mathematics |
| Engineering mathematics | |
| Physics | |
| Combinatorial analysis | |
| Group theory | |
| Functional analysis | |
| Differential equations, Partial | |
| Applications of Mathematics | |
| Physics, general | |
| Combinatorics | |
| Group Theory and Generalizations | |
| Functional Analysis | |
| Partial Differential Equations | |
| Persona (resp. second.): | VershikAnatoly M |
| Note generali: | Bibliographic Level Mode of Issuance: Monograph |
| Nota di bibliografia: | Includes bibliographical references. |
| Nota di contenuto: | Random matrices, orthogonal polynomials and Riemann — Hilbert problem -- Asymptotic representation theory and Riemann — Hilbert problem -- Four Lectures on Random Matrix Theory -- Free Probability Theory and Random Matrices -- Algebraic geometry,symmetric functions and harmonic analysis -- A Noncommutative Version of Kerov’s Gaussian Limit for the Plancherel Measure of the Symmetric Group -- Random trees and moduli of curves -- An introduction to harmonic analysis on the infinite symmetric group -- Two lectures on the asymptotic representation theory and statistics of Young diagrams -- III Combinatorics and representation theory -- Characters of symmetric groups and free cumulants -- Algebraic length and Poincaré series on reflection groups with applications to representations theory -- Mixed hook-length formula for degenerate a fine Hecke algebras. |
| Sommario/riassunto: | At the Summer School Saint Petersburg 2001, the main lecture courses bore on recent progress in asymptotic representation theory: those written up for this volume deal with the theory of representations of infinite symmetric groups, and groups of infinite matrices over finite fields; Riemann-Hilbert problem techniques applied to the study of spectra of random matrices and asymptotics of Young diagrams with Plancherel measure; the corresponding central limit theorems; the combinatorics of modular curves and random trees with application to QFT; free probability and random matrices, and Hecke algebras. |
| Titolo autorizzato: | Asymptotic combinatorics with applications to mathematical physics ![]() |
| ISBN: | 3-540-44890-X |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9910146272903321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |