Vai al contenuto principale della pagina

Frobenius and Separable Functors for Generalized Module Categories and Nonlinear Equations / / by Stefaan Caenepeel, Gigel Militaru, Shenglin Zhu



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Caenepeel Stefaan Visualizza persona
Titolo: Frobenius and Separable Functors for Generalized Module Categories and Nonlinear Equations / / by Stefaan Caenepeel, Gigel Militaru, Shenglin Zhu Visualizza cluster
Pubblicazione: Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2002
Edizione: 1st ed. 2002.
Descrizione fisica: 1 online resource (XIV, 354 p.)
Disciplina: 512.24
Soggetto topico: Associative rings
Rings (Algebra)
Associative Rings and Algebras
Persona (resp. second.): MilitaruGigel
ZhuShenglin
Note generali: Bibliographic Level Mode of Issuance: Monograph
Nota di bibliografia: Includes bibliographical references (pages [345]-352) and index.
Nota di contenuto: Part I: Entwined modules and Doi-Koppinen Hopf modules -- 1. Generalities -- 2. Doi-Koppinen Hopf modules and entwined modules -- 3. Frobenius and separable functors for entwined modules -- 4. Applications -- Part II: Nonlinear equations -- 5. Yetter-Drinfeld modules and the quantum Yang-Baxter equation -- 6. Hopf modules and the pentagon equation -- 7. Long dimodules and the Long equation -- 8. The Frobenius-Separability equation -- References -- Index.
Sommario/riassunto: Doi-Koppinen Hopf modules and entwined modules unify various kinds of modules that have been intensively studied over the past decades, such as Hopf modules, graded modules, Yetter-Drinfeld modules. The book presents a unified theory, with focus on categorical concepts generalizing the notions of separable and Frobenius algebras, and discussing relations with smash products, Galois theory and descent theory. Each chapter of Part II is devoted to a particular nonlinear equation. The exposé is organized in such a way that the analogies between the four are clear: the quantum Yang-Baxter equation is related to Yetter-Drinfeld modules, the pentagon equation to Hopf modules, and the Long equation to Long dimodules. The Frobenius-separability equation provides a new viewpoint to Frobenius and separable algebras.
Titolo autorizzato: Frobenius and Separable Functors for Generalized Module Categories and Nonlinear Equations  Visualizza cluster
ISBN: 3-540-48042-0
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910144941703321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Lecture Notes in Mathematics, . 0075-8434 ; ; 1787