Vai al contenuto principale della pagina
Autore: | Baer M (Michael), <1937-> |
Titolo: | Beyond Born-Oppenheimer [[electronic resource] ] : electronic non-adiabatic coupling terms and conical intersections / / by Michael Baer |
Pubblicazione: | Hoboken, N.J., : Wiley, c2006 |
Descrizione fisica: | 1 online resource (254 p.) |
Disciplina: | 539.758 |
541/.28 | |
Soggetto topico: | Molecular dynamics - Mathematics |
Born-Oppenheimer approximation | |
Adiabatic invariants | |
Soggetto genere / forma: | Electronic books |
Note generali: | Includes index |
Nota di contenuto: | BEYOND BORN-OPPENHEIMER; CONTENTS; PREFACE; ABBREVIATIONS; 1 MATHEMATICAL INTRODUCTION; 1.1 Hilbert Space; 1.1.1 Eigenfunction and Electronic Nonadiabatic Coupling Term; 1.1.2 Abelian and Non-Abelian Curl Equations; 1.1.3 Abelian and Non-Abelian Divergence Equations; 1.2 Hilbert Subspace; 1.3 Vectorial First-Order Differential Equation and Line Integral; 1.3.1 Vectorial First-Order Differential Equation; 1.3.1.1 Study of Abelian Case; 1.3.1.2 Study of Non-Abelian Case; 1.3.1.3 Orthogonality; 1.3.2 Integral Equation; 1.3.2.1 Integral Equation along an Open Contour |
1.3.2.2 Integral Equation along a Closed Contour1.3.3 Solution of Differential Vector Equation; 1.4 Summary and Conclusions; Problem; References; 2 BORN-OPPENHEIMER APPROACH: DIABATIZATION AND TOPOLOGICAL MATRIX; 2.1 Time-Independent Treatment; 2.1.1 Adiabatic Representation; 2.1.2 Diabatic Representation; 2.1.3 Adiabatic-to-Diabatic Transformation; 2.1.3.1 Transformation for Electronic Basis Sets; 2.1.3.2 Transformation for Nuclear Wavefunctions; 2.1.3.3 Implications Due to Adiabatic-to-Diabatic Transformation; 2.1.3.4 Final Comments; 2.2 Application of Complex Eigenfunctions | |
2.2.1 Introducing Time-Independent Phase Factors2.2.1.1 Adiabatic Schrödinger Equation; 2.2.1.2 Adiabatic-to-Diabatic Transformation; 2.2.2 Introducing Time-Dependent Phase Factors; 2.3 Time-Dependent Treatment; 2.3.1 Time-Dependent Perturbative Approach; 2.3.2 Time-Dependent Nonperturbative Approach; 2.3.2.1 Adiabatic Time-Dependent Electronic Basis Set; 2.3.2.2 Adiabatic Time-Dependent Nuclear Schrödinger Equation; 2.3.2.3 Time-Dependent Adiabatic-to-Diabatic Transformation; 2.3.3 Summary; Problem; 2A Appendixes; 2A.1 Dressed Nonadiabatic Coupling Matrix | |
2A.2 Analyticity of Adiabatic-to-Diabatic Transformation Matrix à in Spacetime ConfigurationReferences; 3 MODEL STUDIES; 3.1 Treatment of Analytical Models; 3.1.1 Two-State Systems; 3.1.1.1 Adiabatic-to-Diabatic Transformation Matrix; 3.1.1.2 Topological (D) Matrix; 3.1.1.3 The Diabatic Potential Matrix; 3.1.2 Three-State Systems; 3.1.2.1 Adiabatic-to-Diabatic Transformation Matrix; 3.1.2.2 Topological Matrix; 3.1.3 Four-State Systems; 3.1.3.1 Adiabatic-to-Diabatic Transformation Matrix; 3.1.3.2 Topological Matrix; 3.1.4 Comments Related to General Case | |
4.3 Quantization of Nonadiabatic Coupling Matrix: Study of Ab Initio Molecular Systems | |
Sommario/riassunto: | INTRODUCING A POWERFUL APPROACH TO DEVELOPING RELIABLE QUANTUM MECHANICAL TREATMENTS OF A LARGE VARIETY OF PROCESSES IN MOLECULAR SYSTEMS.The Born-Oppenheimer approximation has been fundamental to calculation in molecular spectroscopy and molecular dynamics since the early days of quantum mechanics. This is despite well-established fact that it is often not valid due to conical intersections that give rise to strong nonadiabatic effects caused by singular nonadiabatic coupling terms (NACTs). In Beyond Born-Oppenheimer, Michael Baer, a leading authority on molecular scattering theory an |
Titolo autorizzato: | Beyond Born-Oppenheimer |
ISBN: | 1-280-41143-0 |
9786610411436 | |
0-470-32705-7 | |
0-471-78008-1 | |
0-471-78007-3 | |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910143416003321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |