Vai al contenuto principale della pagina

Forecast error correction using dynamic data assimilation / / by Sivaramakrishnan Lakshmivarahan, John M. Lewis, Rafal Jabrzemski



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Lakshmivarahan Sivaramakrishnan Visualizza persona
Titolo: Forecast error correction using dynamic data assimilation / / by Sivaramakrishnan Lakshmivarahan, John M. Lewis, Rafal Jabrzemski Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017
Edizione: 1st ed. 2017.
Descrizione fisica: 1 online resource (XVI, 270 p. 125 illus., 104 illus. in color.)
Disciplina: 004
Soggetto topico: Data mining
Computer simulation
Computers
Atmospheric sciences
Geology—Statistical methods
Data Mining and Knowledge Discovery
Simulation and Modeling
Models and Principles
Atmospheric Sciences
Quantitative Geology
Persona (resp. second.): LewisJohn M
JabrzemskiRafal
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Part I Theory -- Introduction -- Dynamics of evolution of first- and second-order forward sensitivity: discrete time and continuous time -- Estimation of control errors using forward sensitivities: FSM with single and multiple observations -- Relation to adjoint sensitivity and impact of observation -- Estimation of model errors using Pontryagin’s Maximum Principle- its relation to 4-D VAR and hence FSM -- FSM and predictability - Lyapunov index -- Part II Applications -- Mixed-layer model - the Gulf of Mexico problem -- Lagrangian data assimilation -- Conclusions -- Appendix -- Index. .
Sommario/riassunto: This book introduces the reader to a new method of data assimilation with deterministic constraints (exact satisfaction of dynamic constraints)—an optimal assimilation strategy called Forecast Sensitivity Method (FSM), as an alternative to the well-known four-dimensional variational (4D-Var) data assimilation method. 4D-Var works with a forward in time prediction model and a backward in time tangent linear model (TLM). The equivalence of data assimilation via 4D-Var and FSM is proven and problems using low-order dynamics clarify the process of data assimilation by the two methods. The problem of return flow over the Gulf of Mexico that includes upper-air observations and realistic dynamical constraints gives the reader a good idea of how the FSM can be implemented in a real-world situation. .
Titolo autorizzato: Forecast Error Correction using Dynamic Data Assimilation  Visualizza cluster
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910135974803321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilitĂ  qui
Serie: Springer Atmospheric Sciences, . 2194-5217