Vai al contenuto principale della pagina
Autore: | Lakshmivarahan Sivaramakrishnan |
Titolo: | Forecast error correction using dynamic data assimilation / / by Sivaramakrishnan Lakshmivarahan, John M. Lewis, Rafal Jabrzemski |
Pubblicazione: | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017 |
Edizione: | 1st ed. 2017. |
Descrizione fisica: | 1 online resource (XVI, 270 p. 125 illus., 104 illus. in color.) |
Disciplina: | 004 |
Soggetto topico: | Data mining |
Computer simulation | |
Computers | |
Atmospheric sciences | |
Geology—Statistical methods | |
Data Mining and Knowledge Discovery | |
Simulation and Modeling | |
Models and Principles | |
Atmospheric Sciences | |
Quantitative Geology | |
Persona (resp. second.): | LewisJohn M |
JabrzemskiRafal | |
Nota di bibliografia: | Includes bibliographical references and index. |
Nota di contenuto: | Part I Theory -- Introduction -- Dynamics of evolution of first- and second-order forward sensitivity: discrete time and continuous time -- Estimation of control errors using forward sensitivities: FSM with single and multiple observations -- Relation to adjoint sensitivity and impact of observation -- Estimation of model errors using Pontryagin’s Maximum Principle- its relation to 4-D VAR and hence FSM -- FSM and predictability - Lyapunov index -- Part II Applications -- Mixed-layer model - the Gulf of Mexico problem -- Lagrangian data assimilation -- Conclusions -- Appendix -- Index. . |
Sommario/riassunto: | This book introduces the reader to a new method of data assimilation with deterministic constraints (exact satisfaction of dynamic constraints)—an optimal assimilation strategy called Forecast Sensitivity Method (FSM), as an alternative to the well-known four-dimensional variational (4D-Var) data assimilation method. 4D-Var works with a forward in time prediction model and a backward in time tangent linear model (TLM). The equivalence of data assimilation via 4D-Var and FSM is proven and problems using low-order dynamics clarify the process of data assimilation by the two methods. The problem of return flow over the Gulf of Mexico that includes upper-air observations and realistic dynamical constraints gives the reader a good idea of how the FSM can be implemented in a real-world situation. . |
Titolo autorizzato: | Forecast Error Correction using Dynamic Data Assimilation |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910135974803321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilitĂ qui |