LEADER 00985cas0 2200313 450 001 SOBP300009 005 20210729060556.0 011 $a11298219 100 $a20050505a19939999|||||ita|0103 ba 101 $aita 102 $aIT 110 $aa 200 1 $a'ANANKE$ecultura, storia e tecniche della conservazione 207 1$aA. 1, n. 1 (1993)- 210 $aFirenze$cAlinea 215 $av.$d24 cm 300 $aTrimestrale; quadrimestrale (2006-) 300 $aDal 2013, l'editore cambia in: Altralinea 300 $aIl complemento del titolo varia 300 $aLa numerazione dei fascicoli č progressiva nelle annate 801 0$aIT$bUNISOB$c20210729$gRICA 850 $aUNISOB 852 $aUNISOB$jIt$m86854 912 $aSOBP300009 940 $aS 120 Periodico SBN 941 $aS 957 $aIt$b000314$gCON$d86854$racquisto$uSospeso$1carrano$2UNISOB$3UNISOB$420060221084227.0$520210729060556.0$6catenaccif 996 $aANANKE$9328123 997 $aUNISOB LEADER 01083nam 2200349 n 450 001 996391019803316 005 20221108003032.0 035 $a(CKB)1000000000661360 035 $a(EEBO)2240894763 035 $a(UnM)99846316 035 $a(EXLCZ)991000000000661360 100 $a19911023d1549 uy | 101 0 $aeng 135 $aurbn||||a|bb| 200 10$aD. Ioannis Aepini liber de purgatorio. Satisfactionibus ..$b[electronic resource] 210 $aLondini $c[Richard Grafton]$dAnno.1549 215 $a[212] p 300 $aPrinter's name from STC. 300 $aSignatures: A-Z⁴ 2A-2B⁴ 2C⁜. 300 $aReproduction of the original in the British Library. 330 $aeebo-0018 606 $aPurgatory$vEarly works to 1800 615 0$aPurgatory 700 $aAepinus$b Johann$f1499-1553.$01021860 801 0$bCu-RivES 801 1$bCu-RivES 801 2$bCStRLIN 801 2$bWaOLN 906 $aBOOK 912 $a996391019803316 996 $aD. Ioannis Aepini liber de purgatorio. Satisfactionibus .$92426799 997 $aUNISA LEADER 04142nam 22006375 450 001 9910254610703321 005 20200705030327.0 010 $a3-319-24898-7 024 7 $a10.1007/978-3-319-24898-1 035 $a(CKB)3710000000486781 035 $a(EBL)4068161 035 $a(SSID)ssj0001585064 035 $a(PQKBManifestationID)16265532 035 $a(PQKBTitleCode)TC0001585064 035 $a(PQKBWorkID)14866007 035 $a(PQKB)10677091 035 $a(DE-He213)978-3-319-24898-1 035 $a(MiAaPQ)EBC4068161 035 $a(PPN)190526629 035 $a(EXLCZ)993710000000486781 100 $a20151006d2016 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aEffective Evolution Equations from Quantum Dynamics /$fby Niels Benedikter, Marcello Porta, Benjamin Schlein 205 $a1st ed. 2016. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2016. 215 $a1 online resource (97 p.) 225 1 $aSpringerBriefs in Mathematical Physics,$x2197-1757 ;$v7 300 $aDescription based upon print version of record. 311 $a3-319-24896-0 320 $aIncludes bibliographical references at the end of each chapters. 327 $aIntroduction -- Mean-Field Regime for Bosonic Systems -- Coherent States Approach.-Fluctuations Around Hartree Dynamics -- The Gross-Pitaevskii Regime -- Mean-Field regime for Fermionic Systems -- Dynamics of Fermionic Quasi-Free Mixed States -- The Role of Correlations in the Gross-Pitaevskii Energy. 330 $aThese notes investigate the time evolution of quantum systems, and in particular the rigorous derivation of effective equations approximating the many-body Schrödinger dynamics in certain physically interesting regimes. The focus is primarily on the derivation of time-dependent effective theories (non-equilibrium question) approximating many-body quantum dynamics. The book is divided into seven sections, the first of which briefly reviews the main properties of many-body quantum systems and their time evolution. Section 2 introduces the mean-field regime for bosonic systems and explains how the many-body dynamics can be approximated in this limit using the Hartree equation. Section 3 presents a method, based on the use of coherent states, for rigorously proving the convergence towards the Hartree dynamics, while the fluctuations around the Hartree equation are considered in Section 4. Section 5 focuses on a discussion of a more subtle regime, in which the many-body evolution can be approximated by means of the nonlinear Gross-Pitaevskii equation. Section 6 addresses fermionic systems (characterized by antisymmetric wave functions); here, the fermionic mean-field regime is naturally linked with a semiclassical regime, and it is proven that the evolution of approximate Slater determinants can be approximated using the nonlinear Hartree-Fock equation. In closing, Section 7 reexamines the same fermionic mean-field regime, but with a focus on mixed quasi-free initial data approximating thermal states at positive temperature. . 410 0$aSpringerBriefs in Mathematical Physics,$x2197-1757 ;$v7 606 $aQuantum theory 606 $aMathematical physics 606 $aQuantum Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/P19080 606 $aMathematical Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/M35000 615 0$aQuantum theory. 615 0$aMathematical physics. 615 14$aQuantum Physics. 615 24$aMathematical Physics. 676 $a530.12 700 $aBenedikter$b Niels$4aut$4http://id.loc.gov/vocabulary/relators/aut$0748776 702 $aPorta$b Marcello$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aSchlein$b Benjamin$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910254610703321 996 $aEffective Evolution Equations from Quantum Dynamics$92522517 997 $aUNINA