LEADER 01068nam0 2200301 450 001 000014802 005 20090223084846.0 100 $a20080724d1972----km-y0itay50------ba 101 0 $aita 102 $aIT 105 $ay-------001yy 200 1 $a<>sindacato italiano negli anni sessanta$ela FIM-CISL dall'associazione alla classe$fGian Primo Cella, Bruno Manghi, Paola Piva 210 $aBari$cDe Donato$d1972 215 $a323 p.$d21 cm 225 2 $aMovimento operaio$v3 410 0$12001$aMovimento operaio 500 10$a<>sindacato italiano negli anni sessanta$935246 610 1 $aFederazione italiana metalmeccanici$a1960-1969 676 $a331.88$v17$9Movimento operaio sindacati 700 1$aCella,$bGian Primo$0115569 701 1$aPiva,$bPaola$0142436 701 1$aManghi,$bBruno$050970 712 02$aFederazione italiana metalmeccanici 801 0$aIT$bUNIPARTHENOPE$c20080724$gRICA$2UNIMARC 912 $a000014802 951 $a831/5$b495/L/CNR$cNAVA2 996 $aSindacato italiano negli anni sessanta$935246 997 $aUNIPARTHENOPE LEADER 01274cam0 22003131 450 001 SOBE00021176 005 20210323145938.0 010 $a9788888991665 100 $a20120104d2008 |||||ita|0103 ba 101 $aita 102 $aIT 200 1 $aInteragendo$espazi di confronto delle mediazioni$fa cura di Maria Ferrara, Chiara Pucciarelli, Claudia Troisi 210 $aAvellino$cSellino$d2008 215 $a317 p.$d23 cm 225 2 $aCollana di antropologia e scienze sociali 300 $aIn testa al frontespizio: Università degli studi Suor Orsola Benincasa 410 1$1001LAEC00021896$12001 $a*Collana di antropologia e scienze sociali 702 1$aFerrara, Maria$3A600200037726$4070 702 1$aTroisi, Claudia$3A600200039349$4070 702 1$aPucciarelli, Chiara$3A600200039348$4070 801 0$aIT$bUNISOB$c20210323$gRICA 850 $aUNISOB 852 $aUNISOB$jFondo|De|Sanctis|F$m155452 912 $aSOBE00021176 940 $aM 102 Monografia moderna SBN 941 $aM 957 $aFondo|De|Sanctis|F$b000481$gCON$d155452$hDeSanctisF$rdono$1menle$2UNISOB$3UNISOB$420120104085833.0$520210323145938.0$6Spinosa$fPer le modalità di consultazione vedi homepage della Biblioteca link Fondi 996 $aInteragendo$91719949 997 $aUNISOB LEADER 05044oam 2200541 450 001 9910786968303321 005 20190911112728.0 010 $a981-4407-48-8 035 $a(OCoLC)897557540 035 $a(MiFhGG)GVRL8QYI 035 $a(EXLCZ)992670000000361825 100 $a20130408h20132013 uy 0 101 0 $aeng 135 $aurun|---uuuua 181 $ctxt 182 $cc 183 $acr 200 10$aGlassy disordered systems $eglass formation and universal anomalous low-energy properties /$fMichael I. Klinger, Bar-Ilan University, Israel 210 $aSingapore $cWorld Scientific$d2013 210 1$aNew Jersey :$cWorld Scientific,$d[2013] 210 4$d?2013 215 $a1 online resource (xii, 326 pages) $cillustrations 225 0 $aGale eBooks 300 $aDescription based upon print version of record. 311 $a981-4407-47-X 320 $aIncludes bibliographical references and index. 327 $aPreface; CONTENTS; I. Fundamental Properties of Glasses; 1. General Description of Glasses and Glass Transition; 1.1. Metastability and disorder. Types of glasses; 1.2. Qualitative description of glass (liquid-to-glass) transition; 1.3. Kinetic and thermodynamic properties; 1.4. Slow relaxation processes; 2. Models of Glassy (Topologically Disordered) Structures; 2.1. Characteristics of glassy structures; 2.2. Homogeneous (ideal) models; 2.3. Inhomogeneous (cluster) models; 3. Some Theoretical Models of Glass Transition; 3.1. Vogel-Fulcher relation and "entropy crisis" 327 $a3.2. Role of configurational entropy, free-volume effects and "defects" diffusion3.3. Mode-coupling model: Dynamic liquid-glass transition; 4. Kohlrausch-William-Watt (KWW) Relaxation; 4.1. General features of slow relaxation processes; 4.2. Parallel-diffusion relaxation models; 4.3. Correlated, hierarchically constrained, relaxation models; 4.4. Concluding remarks; II. Anomalous Low-Energy Dynamics of Glasses; 5. Origin of Anomalous Low-Energy Properties of Glasses; 6. Experimental Background for Anomalous Low-Energy Atomic Dynamics; 6.1. Very low temperatures and frequencies 327 $a6.2. Moderately low temperatures and frequencies7. Soft-Mode Model of Low-Energy Atomic Dynamics; 7.1. Atomic soft modes and related potentials; 7.2. Probability distribution densities; 7.3. Low-energy excitations: Density of states and concentration; 7.4. Interaction of soft-mode excitations with acoustic phonons; 8. Soft-Mode Excitations of Very Low and "Intermediate" Energies; 8.1. Soft-mode tunneling states (independent two-level systems); 8.2. Soft-mode excitations of "intermediate" energies; 9. Tunneling States as Very Low Energy Limit Case 327 $a9.1. Standard tunneling model: Independent two-level systems9.2. Advanced tunneling model: Interacting two-level systems; 9.2.1. Mean-field approximation: "Spectral diffusion"; 9.2.2. Many-body effects: Collective excitations; 10. Soft-Mode Excitations of Moderately-Low Energies (Boson Peak); 10.1. Ioffe-Regel crossover for acoustic phonons as origin of boson peak; 10.2. Independent soft-mode vibrational excitations; 10.3. Total vibrational density of independent soft-mode states; 10.4. Generalization for interacting harmonic excitations 327 $a10.5. Total vibrational density of states: dynamic properties10.6. Width (attenuation) of acoustic phonons; 10.7. Thermal vibrational properties of glasses; 11. On Universal and Non-Universal Dynamic Properties of Glasses; 11.1. Very low temperatures and frequencies; 11.1.1. On universality of basic distributions in ATM; 11.1.2. On universality of soft-mode distribution inSMM; 11.2. Moderately low temperatures and frequencies; 12. Other Models for Glasses with High Frequency Sound; 12.1. Theoretical mode-coupling model; 12.2. Theoretical random-matrix model 327 $a12.3. Comparison with the soft-mode model 330 $aThe present book describes the fundamental features of glassy disordered systems at high temperatures (close to the liquid-to-glass transition) and for the first time in a book, the universal anomalous properties of glasses at low energies (i.e. temperatures/frequencies lower than the Debye values) are depicted. Several important theoretical models for both the glass formation and the universal anomalous properties of glasses are described and analyzed. The origin and main features of soft atomic-motion modes and their excitations, as well as their role in the anomalous properties, are conside 606 $aGlass$xEffect of high temperatures on 606 $aGlass$xThermomechanical properties 606 $aAtomic structure 615 0$aGlass$xEffect of high temperatures on. 615 0$aGlass$xThermomechanical properties. 615 0$aAtomic structure. 676 $a620.1/44 676 $a620.144 700 $aKlinger$b Michael I$01529552 801 0$bMiFhGG 801 1$bMiFhGG 906 $aBOOK 912 $a9910786968303321 996 $aGlassy disordered systems$93773881 997 $aUNINA