LEADER 00912cam0 2200277 450 001 E600200014192 005 20201124073744.0 010 $a8870754073 100 $a20051103d1995 |||||ita|0103 ba 101 $aita 102 $aIT 200 1 $aPacifismo$fDiodato Roberto 210 $aMilano$cEditrice Bibliografica$d1995 215 $a96 p.$d19 cm 225 2 $aStoria dei Movimenti e delle Idee$v5 410 1$1001LAEC00021601$12001 $a*Storia dei Movimenti e delle Idee$v5 700 1$aDiodato$b, Roberto$3A600200033293$4070$0498331 801 0$aIT$bUNISOB$c20201124$gRICA 850 $aUNISOB 852 $aUNISOB$j000|Coll|44|K$m84163 912 $aE600200014192 940 $aM 102 Monografia moderna SBN 941 $aM 957 $a000|Coll|44|K$b000005$gSi$d84163$racquisto$1pregresso3$2UNISOB$3UNISOB$420051103103500.0$520201124073735.0$6Spinosa 996 $aPacifismo$9736163 997 $aUNISOB LEADER 03549nam 22006615 450 001 9910299985403321 005 20200704115319.0 010 $a3-319-11239-2 024 7 $a10.1007/978-3-319-11239-8 035 $a(CKB)3710000000269649 035 $a(SSID)ssj0001372787 035 $a(PQKBManifestationID)11866425 035 $a(PQKBTitleCode)TC0001372787 035 $a(PQKBWorkID)11306070 035 $a(PQKB)10726968 035 $a(DE-He213)978-3-319-11239-8 035 $a(MiAaPQ)EBC6311677 035 $a(MiAaPQ)EBC5586571 035 $a(Au-PeEL)EBL5586571 035 $a(OCoLC)895258119 035 $a(PPN)182098818 035 $a(EXLCZ)993710000000269649 100 $a20141021d2014 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 12$aA Short Course in Ordinary Differential Equations /$fby Qingkai Kong 205 $a1st ed. 2014. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2014. 215 $a1 online resource (XII, 267 p. 55 illus.) 225 1 $aUniversitext,$x0172-5939 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-319-11238-4 320 $aIncludes bibliographical references & index. 327 $aPreface -- Notation and Abbreviations -- 1. Initial Value Problems -- 2. Linear Differential Equations -- 3. Lyapunov Stability Theory -- 4. Dynamic Systems and Planar Autonomous Equations -- 5. Introduction to Bifurcation Theory -- 6. Second-Order Linear Equations -- Answers and Hints -- Bibliography -- Index. 330 $aThis text is a rigorous treatment of the basic qualitative theory of ordinary differential equations, at the beginning graduate level. Designed as a flexible one-semester course but offering enough material for two semesters, A Short Course covers core topics such as initial value problems, linear differential equations, Lyapunov stability, dynamical systems and the Poincaré?Bendixson theorem, and bifurcation theory, and second-order topics including oscillation theory, boundary value problems, and Sturm?Liouville problems. The presentation is clear and easy-to-understand, with figures and copious examples illustrating the meaning of and motivation behind definitions, hypotheses, and general theorems. A thoughtfully conceived selection of exercises together with answers and hints reinforce the reader's understanding of the material. Prerequisites are limited to advanced calculus and the elementary theory of differential equations and linear algebra, making the text suitable for senior undergraduates as well. 410 0$aUniversitext,$x0172-5939 606 $aDifferential equations 606 $aDynamics 606 $aErgodic theory 606 $aOrdinary Differential Equations$3https://scigraph.springernature.com/ontologies/product-market-codes/M12147 606 $aDynamical Systems and Ergodic Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/M1204X 615 0$aDifferential equations. 615 0$aDynamics. 615 0$aErgodic theory. 615 14$aOrdinary Differential Equations. 615 24$aDynamical Systems and Ergodic Theory. 676 $a515.352 700 $aKong$b Qingkai$4aut$4http://id.loc.gov/vocabulary/relators/aut$0721230 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910299985403321 996 $aShort course in ordinary differential equations$91409947 997 $aUNINA