LEADER 01309nam0 22003613i 450 001 PUV0100887 005 20251003044310.0 010 $a0817635556$bBoston 010 $a3764335556$bBasel 100 $a20081030d1991 ||||0itac50 ba 101 | $aeng 102 $aus 181 1$6z01$ai $bxxxe 182 1$6z01$an 200 1 $aCanonical equational proofs$fLeo Bachmair 210 $aBoston [etc.]$cBirkhauser$d1991 215 $aX, 135 p.$d25 cm 225 | $aProgress in theoretical computer science 300 $aBibliografia: P. 117-127. 410 0$1001MIL0108342$12001 $aProgress in theoretical computer science 606 $aEquazioni$2FIR$3CFIC092310$9E 606 $aVideoscrittura$2FIR$3CFIC003015$9E 676 $a511.3$9LOGICA MATEMATICA (LOGICA SIMBOLICA)$v14 676 $a511.3$9LOGICA MATEMATICA (LOGICA SIMBOLICA)$v22 700 1$aBachmair$b, Leo$3PUVV066545$4070$0771392 801 3$aIT$bIT-000000$c20081030 850 $aIT-BN0095 901 $bNAP 01$cSALA DING $n$ 912 $aPUV0100887 950 0$aBiblioteca Centralizzata di Ateneo$c1 v.$d 01SALA DING 511.3 BAC.ca$e 0102 0000009755 VMA A4 1 v.$fY $h20081030$i20081030 977 $a 01 996 $aCanonical equational proofs$91574093 997 $aUNISANNIO