LEADER 01691nam0 22003973i 450 001 MIL0724535 005 20251003044237.0 010 $a0691129932 010 $a9780691129938 100 $a20080529d2006 ||||0itac50 ba 101 | $aeng$ceng 102 $aus 181 1$6z01$ai $bxxxe 182 1$6z01$an 183 1$6z01$anc$2RDAcarrier 200 1 $aˆThe ‰traveling salesman problem$ea computational study$fDavid L. Applegate ... [et al.] 210 $aPrinceton$aOxford$cPrinceton university press$d©2006 215 $aIX, 593 p.$cill.$d24 cm. 225 | $aPrinceton series in applied mathematics 410 0$1001UBO1850253$12001 $aPrinceton series in applied mathematics 500 11$aˆThe ‰traveling salesman problem$3UBS0027950$9749562 606 $aOttimizzazione $2FIR$3MILC010488$9I 606 $aAnalisi combinatoria$2FIR$3CFIC068825$9E 676 $a511$9Principi generali della matematica$v14 676 $a511.6$9Matematica. Analisi combinatoria$v22 696 $aCombinatoria 699 $aAnalisi combinatoria$yCombinatoria 702 1$aApplegate$b, David L.$3MILV323068 801 3$aIT$bIT-000000$c20080529 850 $aIT-BN0095 901 $bNAP 01$cSALA DING $n$ 912 $aMIL0724535 950 0$aBiblioteca Centralizzata di Ateneo$c1 v. in due copie$d 01SALA DING 511 TRASP$e 0102 0000068845 VMA A4 1 v.$fY $h20080529$i20080529$c1 v. in due copie$d 01SALA DING 511 TRASP$e 0102 0000069115 VMA A4(bis 1 v. (2. copia)$fY $h20080620$i20080620 977 $a 01 996 $aTraveling salesman problem$9749562 997 $aUNISANNIO