LEADER 01203nam0-2200421---450- 001 990009853930403321 005 20140507131221.0 010 $a88-7488-037-5 035 $a000985393 035 $aFED01000985393 035 $a(Aleph)000985393FED01 035 $a000985393 100 $a20140430d2003----km-y0itay50------ba 101 0 $aita 102 $aIT 105 $a--------001yy 200 1 $aLezioni di fondamenti di informatica$fD. Calvanese ...[et al.] 205 $a2 ed. 210 $aBologna$cProgetto Leonardo Esculapio$d2003 215 $a190 p.$d24 cm 225 1 $aProgetto Leonardo 327 0 $aParte 1.: Introduzione alla programmazione in Java 610 0 $aInformatica 676 $a004 700 1$aCalvanese,$bD.$0522759 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990009853930403321 952 $a13 H 52 03$b19108$fFINBC 952 $a13 H 52 04$b19109$fFINBC 952 $a13 25 33$b19107$fFINBC 952 $a23 05 E 34$b19110$fFINAG 952 $a23 05 E 35$b19111$fFINAG 952 $a23 05 E 36$b19112$fFINAG 959 $aFINBC 959 $aFINAG 996 $aLezioni di fondamenti di informatica$9825504 997 $aUNINA LEADER 01814nam0 22003853i 450 001 CAM0007868 005 20251003044105.0 010 $a9788850328956 100 $a20110331d2009 ||||0itac50 ba 101 | $aita 102 $ait 181 1$6z01$ai $bxxxe 182 1$6z01$an 200 1 $aSviluppare applicazioni con iPhone SDK$fBill Dudney, Chris Adamson 210 $aMilano$cApogeo$d2009 215 $aX, 466 p.$d24 cm. 225 | $aGuida completa 410 0$1001IEI0117613$12001 $aGuida completa 500 10$aiPhone SDK development, building iPhone applications$3MIL0786749$9CAMV002185$928252 676 $a005.26$9PROGRAMMAZIONE PER MICROELABORATORI$v14 676 $a005.26$9PROGRAMMAZIONE PER MICROELABORATORI DIGITALI$v21 676 $a005.26$9PROGRAMMAZIONE PER SPECIFICI TIPI DI ELABORATORE. PROGRAMMI PER MICROELABORATORI$v22 676 $a006.54$9METODI SPECIALI DI ELABORAZIONE - SINTESI DELLA PAROLA$v20 676 $a621.38456$9SISTEMI TELEFONICI CELLULARI$v21 700 1$aDudney$b, Bill $f <1967- >$3CAMV002185$4070$0447686 701 1$aAdamson$b, Chris$f <1967- >$3CAMV002186$4070$0447687 790 1$aAdamson$b, Christopher Lawrence$3SBNV101749$zAdamson, Chris <1967- > 801 3$aIT$bIT-000000$c20110331 850 $aIT-BN0095 901 $bNAP 01$cSALA DING $n$ 912 $aCAM0007868 950 0$aBiblioteca Centralizzata di Ateneo$c1 v. in due copie$d 01SALA DING 005.26 DUD.sv$e 0102 0000094115 VMA A4 1 v.$fY $h20120906$i20120906$c1 v. in due copie$d 01SALA DING 005.26 DUD.sv$e 0102 0000094125 VMA A4(bis 1 v. (2. copia)$fY $h20120906$i20120906 977 $a 01 996 $aIPhone SDK development, building iPhone applications$928252 997 $aUNISANNIO LEADER 04292nam 22006615 450 001 9910360852603321 005 20200705160427.0 010 $a9789811517396 010 $a9811517398 024 7 $a10.1007/978-981-15-1739-6 035 $a(CKB)4100000009844812 035 $a(DE-He213)978-981-15-1739-6 035 $a(MiAaPQ)EBC5978848 035 $a(PPN)269145281 035 $a(MiAaPQ)EBC31872513 035 $a(Au-PeEL)EBL31872513 035 $a(EXLCZ)994100000009844812 100 $a20191113d2019 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aDifferential Geometry of Curves and Surfaces /$fby Shoshichi Kobayashi 205 $a1st ed. 2019. 210 1$aSingapore :$cSpringer Singapore :$cImprint: Springer,$d2019. 215 $a1 online resource (XII, 192 p. 1 illus.) 225 1 $aSpringer Undergraduate Mathematics Series,$x1615-2085 311 08$a9789811517389 311 08$a981151738X 327 $aPlane Curves and Space Curves -- Local Theory of Surfaces in the Space -- Geometry of Surfaces -- The Gauss-Bonnet Theorem -- Minimal Surfaces. . 330 $aThis book is a posthumous publication of a classic by Prof. Shoshichi Kobayashi, who taught at U.C. Berkeley for 50 years, recently translated by Eriko Shinozaki Nagumo and Makiko Sumi Tanaka. There are five chapters: 1. Plane Curves and Space Curves; 2. Local Theory of Surfaces in Space; 3. Geometry of Surfaces; 4. Gauss?Bonnet Theorem; and 5. Minimal Surfaces. Chapter 1 discusses local and global properties of planar curves and curves in space. Chapter 2 deals with local properties of surfaces in 3-dimensional Euclidean space. Two types of curvatures ? the Gaussian curvature K and the mean curvature H ?are introduced. The method of the moving frames, a standard technique in differential geometry, is introduced in the context of a surface in 3-dimensional Euclidean space. In Chapter 3, the Riemannian metric on a surface is introduced and properties determined only by the first fundamental form are discussed. The concept of a geodesic introduced in Chapter 2 is extensively discussed, and several examples of geodesics are presented with illustrations. Chapter 4 starts with a simple and elegant proof of Stokes? theorem for a domain. Then the Gauss?Bonnet theorem, the major topic of this book, is discussed at great length. The theorem is a most beautiful and deep result in differential geometry. It yields a relation between the integral of the Gaussian curvature over a given oriented closed surface S and the topology of S in terms of its Euler number ?(S). Here again, many illustrations are provided to facilitate the reader?s understanding. Chapter 5, Minimal Surfaces, requires some elementary knowledge of complex analysis. However, the author retained the introductory nature of this book and focused on detailed explanations of the examples of minimal surfaces given in Chapter 2. . 410 0$aSpringer Undergraduate Mathematics Series,$x1615-2085 606 $aGeometry, Differential 606 $aMathematical analysis 606 $aAnalysis (Mathematics) 606 $aManifolds (Mathematics) 606 $aComplex manifolds 606 $aDifferential Geometry$3https://scigraph.springernature.com/ontologies/product-market-codes/M21022 606 $aAnalysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M12007 606 $aManifolds and Cell Complexes (incl. Diff.Topology)$3https://scigraph.springernature.com/ontologies/product-market-codes/M28027 615 0$aGeometry, Differential. 615 0$aMathematical analysis. 615 0$aAnalysis (Mathematics). 615 0$aManifolds (Mathematics) 615 0$aComplex manifolds. 615 14$aDifferential Geometry. 615 24$aAnalysis. 615 24$aManifolds and Cell Complexes (incl. Diff.Topology). 676 $a516.36 700 $aKobayashi$b Shoshichi$4aut$4http://id.loc.gov/vocabulary/relators/aut$042069 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910360852603321 996 $aDifferential Geometry of Curves and Surfaces$91733854 997 $aUNINA