LEADER 13401nam 2200673 a 450 001 9910812130103321 005 20240313151543.0 010 $a9781118529980 010 $a1118529987 010 $a9781118530009 010 $a1118530004 010 $a9781299242173 010 $a1299242170 010 $a9781118529997 010 $a1118529995 035 $a(CKB)3230000000207134 035 $a(MiAaPQ)EBC1129736 035 $a(MiAaPQ)EBC4036114 035 $a(Au-PeEL)EBL1129736 035 $a(CaPaEBR)ebr10662599 035 $a(OCoLC)829460545 035 $a(PPN)20474055X 035 $a(Perlego)1003124 035 $a(EXLCZ)993230000000207134 100 $a20121026d2013 uy 0 101 0 $aeng 135 $aurcn||||||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 00$aCapillary electrophoresis and microchip capillary electrophoresis $eprinciples, applications, and limitations /$fedited by Carlos D. Garci?a, Karin Y. Chumbimuni-Torres, Emanuel Carrilho 205 $a1st ed. 210 $aHoboken, N.J. $cWiley$d2013 215 $axxii, 394 p. $cill 311 08$a9780470572177 311 08$a0470572175 320 $aIncludes bibliographical references and index. 327 $aCapillary Electrophoresis and Microchip Capillary Electrophoresis: Principles, Applications, and Limitations -- Contents -- Preface -- Acknowledgments -- Contributors -- 1 Critical Evaluation of the Use of Surfactants in Capillary Electrophoresis -- 1.1 Introduction -- 1.2 Surfactants for Wall Coatings -- 1.2.1 Controlling the Electroosmotic Flow -- 1.2.2 Preventing Adsorption to the Capillary -- 1.3 Surfactants as Buffer Additives -- 1.3.1 Micellar Electrokinetic Chromatography -- 1.3.2 Microemulsion Electrokinetic Chromatography -- 1.3.3 Nonaqueous Capillary Electrophoresis with Added Surfactants -- 1.4 Surfactants for Analyte Preconcentration -- 1.4.1 Sweeping -- 1.4.2 Transient Trapping -- 1.4.3 Analyte Focusing by Micelle Collapse -- 1.4.4 Micelle to Solvent Stacking -- 1.4.5 Combinations of Preconcentration Methods -- 1.4.6 Cloud Point Extraction -- 1.5 Surfactants and Detection in CE -- 1.5.1 Mass Spectrometry -- 1.5.2 Electrochemical Detection -- 1.6 Conclusions -- References -- 2 Sample Stacking: A Versatile Approach for Analyte Enrichment in CE and Microchip-CE -- 2.1 Introduction -- 2.2 Isotachophoresis -- 2.3 Chromatography-Based Sample Stacking -- 2.4 Methods Based on Electrophoretic Mobility and Velocity Manipulation (Electrophoretic Methods) -- 2.4.1 Field-Enhanced Sample Stacking (FESS) -- 2.4.2 Field-Enhanced Sample Injection (FESI) -- 2.4.3 Large-Volume Sample Stacking (LVSS) -- 2.4.4 Dynamic pH Junction -- 2.5 Sample Stacking in Pseudo-Stationary Phases -- 2.5.1 Field-Enhanced Sample Stacking -- 2.5.2 Hydrodynamic Injection Techniques -- 2.5.2.1 Normal Stacking Mode (NSM) -- 2.5.2.2 Reverse Electrode Polarity Stacking Mode (REPSM) -- 2.5.2.3 Stacking with Reverse Migrating Micelles (SRMM) -- 2.5.2.4 Stacking Using Reverse Migrating Micelles and a Water Plug (SRW) -- 2.5.2.5 High-Conductivity Sample Stacking (HCSS). 327 $a2.5.3 Electrokinetic Injection Techniques -- 2.5.3.1 Field-Enhanced Sample Injection (FESI-MEKC) -- 2.5.3.2 Field-Enhanced Sample Injection with Reverse Migrating Micelles (FESI-RMM) -- 2.5.4 Sweeping -- 2.5.5 Combined Techniques -- 2.5.5.1 Dynamic pH Junction: Sweeping -- 2.5.5.2 Selective Exhaustive Injection (SEI) -- 2.5.6 New Techniques -- 2.6 Stacking Techniques in Microchips -- 2.7 Concluding Remarks -- References -- 3 Sampling and Quantitative Analysis in Capillary Electrophoresis -- 3.1 Introduction -- 3.2 Injection Techniques in CE -- 3.2.1 Hydrodynamic Sample Injection -- 3.2.1.1 Principle -- 3.2.1.2 Advantages and Performance -- 3.2.1.3 Disadvantages -- 3.2.2 Electrokinetic Sample Injection -- 3.2.2.1 Principle -- 3.2.2.2 Advantages and Performance -- 3.2.2.3 Disadvantages -- 3.2.3 Bias-Free Electrokinetic Injection -- 3.2.4 Extraneous Sample Introduction Accompanying Injections in CE -- 3.2.5 Sample Stacking -- 3.2.5.1 Principle -- 3.2.5.2 Advantages and Performance -- 3.2.5.3 Disadvantages -- 3.2.6 Alternative Batch Sample Injection Techniques -- 3.2.6.1 Rotary-Type Injectors for CE -- 3.2.6.2 Hydrodynamic Sample Splitting as Injection Method for CE -- 3.2.6.3 Electrokinetic Sample Splitting as Injection Method for CE -- 3.2.6.4 Dual-Opposite End Injection in CE -- 3.3 Micromachined/Microchip Injection Devices -- 3.3.1 Droplet Sampler Based on Digital Microfluidics -- 3.3.2 Wire Loop Injection -- 3.4 Automated Flow Sample Injection and Hyphenated Systems -- 3.4.1 Introduction -- 3.4.2 Advantages and Performance -- 3.4.3 Disadvantages -- 3.5 Computerized Sampling and Data Analysis -- 3.6 Sampling in Portable CE Instrumentation -- 3.7 Quantitative Analysis in CE -- 3.7.1 Introduction -- 3.7.2 Quantitative Analysis with HD Injection -- 3.7.3 Quantitative Analysis with EK Injection -- 3.7.4 Validation of the Developed CE Methods. 327 $a3.7.5 Computer Data Treatment in Quantitative Analysis -- 3.8 Conclusions -- References -- 4 Practical Considerations for the Design and Implementation of High-Voltage Power Supplies for Capillary and Microchip Capillary Electrophoresis -- 4.1 Introduction -- 4.1.1 High-Voltage Fundamentals -- 4.1.2 Electroosmotic Flow Control -- 4.1.3 Technical Aspects -- 4.1.4 Construction of Bipolar HVPS from Unipolar HVPS -- 4.1.5 Safety Considerations -- 4.1.6 HVPS Commercially Available -- 4.1.7 Practical Considerations -- 4.1.8 Alternative Sources of HV -- 4.1.9 HVPS Controllers for MCE -- 4.2 High-Voltage Measurement -- 4.3 Concluding Remarks -- References -- 5 Artificial Neural Networks in Capillary Electrophoresis -- 5.1 Introduction -- 5.2 Optimization in CE: From Single Variable Approach Toward Artificial Neural Networks -- 5.2.1 Limitations of "Traditional" Single Variable Approach -- 5.2.2 Multivariate Approach with Experimental Design and Response Surface Modeling -- 5.2.2.1 Experimental Design -- 5.2.2.2 Response Surface Modeling -- 5.3 Artificial Neural Networks in Electromigration Methods -- 5.3.1 Introduction-Basic Principles of ANN -- 5.3.2 Optimization Using a Combination of ED and ANN -- 5.3.2.1 Testing of ED-ANN Algorithm -- 5.3.2.2 Practical Applications of ED-ANN -- 5.3.3 Quantitative CE Analysis and Determination from Overlapped Peaks -- 5.3.3.1 Evaluation of Calibration Plots in CE Using ANN to Increase Precision of Analysis -- 5.3.3.2 ANN in Quantitative CE Analysis from Overlapped Peaks -- 5.3.4 ANN in CEC and MEKC -- 5.3.5 ANN for Peptides Modeling -- 5.3.6 Classification and Fingerprinting -- 5.3.7 Other Applications -- 5.4 Conclusions -- Acknowledgments -- References -- 6 Improving the Separation in Microchip Electrophoresis by Surface Modification -- 6.1 Introduction -- 6.2 Strategies for Improving Separation. 327 $a6.2.1 Selection of an Adequate Technique: ME -- 6.2.2 Microchannel Design -- 6.2.3 Selection of an Appropriate ME Material -- 6.2.4 Optimization of the Working Conditions -- 6.2.5 Surface Modification -- 6.2.5.1 Surface Micro- and Nanostructuring -- 6.2.5.2 Employment of Energy Sources -- 6.2.5.3 Chemical Surface Modification -- 6.3 Chemical Modifiers -- 6.3.1 Surfactants -- 6.3.2 Ionic Liquids -- 6.3.3 Nanoparticles -- 6.3.4 Polymers -- 6.4 Conclusions -- Acknowledgments -- References -- 7 Capillary Electrophoretic Reactor and Microchip Capillary Electrophoretic Reactor: Dissociation Kinetic Analysis Method for "Complexes" Using Capillary Electrophoretic Separation Process -- 7.1 Introduction -- 7.2 Basic Concept of CER -- 7.3 Dissociation Kinetic Analysis of Metal Complexes Using a CER -- 7.3.1 Determination of the Rate Constants of Dissociation of 1:2 Complexes of Al3+ and Ga3+ with an Azo Dye Ligand 2,2'-Dihydroxyazobenzene-5,5'-Disulfonate in a CER -- 7.4 Expanding the Scope of the CER to Measurements of Fast Dissociation Kinetics with a Half-Life from Seconds to Dozens of Seconds: Dissociation Kinetic Analysis of Metal Complexes Using a Microchip Capillary Electrophoretic Reactor (µCER) -- 7.5 Expanding the Scope of the CER to the Measurement of Slow Dissociation Kinetics with a Half-Life of Hours -- 7.5.1 Principle of LS-CER -- 7.5.2 Application of LS-CER to the Ti(IV)-Catechin Complex -- 7.5.3 Application of LS-CER to the Ti(IV)-Tiron Complex -- 7.6 Expanding the Scope of CER to Measurement of the Dissociation Kinetics of Biomolecular Complexes -- 7.6.1 Dissociation Kinetic Analysis of [SSB-ssDNA] Using CER -- 7.7 Conclusions -- References -- 8 Capacitively Coupled Contactless Conductivity Detection (C4D) Applied to Capillary Electrophoresis (CE) and Microchip Electrophoresis (MCE) -- 8.1 Introduction -- 8.2 Theory of C4D. 327 $a8.2.1 Basic Principles of C4D -- 8.2.2 Simulation -- 8.2.3 Basic Equation for Sensitivity -- 8.2.4 Equivalent Circuit of a CE-C4D System -- 8.2.5 Practical Guidelines -- 8.3 C4D Applied to Capillary Electrophoresis -- 8.3.1 Instrumental Aspects in CE -- 8.3.2 Coupling C4D with UV-Vis Photometric Detectors in CE -- 8.3.3 Fundamental Studies in Capillary Electrophoresis Using C4D -- 8.3.4 Fundamental Studies on C4D -- 8.3.5 Applications -- 8.4 C4D Applied to Microchip Capillary Electrophoresis -- 8.4.1 Geometry of the Detection Electrodes -- 8.4.1.1 Embedded Electrodes -- 8.4.1.2 Attached Electrodes -- 8.4.1.3 External Electrodes -- 8.4.2 Applications -- 8.4.2.1 Bioanalytical Applications -- 8.4.2.2 On-Chip Enzymatic Reactions -- 8.4.2.3 Food Analysis -- 8.4.2.4 Explosives and Chemical Warfare Agents -- 8.4.2.5 Other Applications -- 8.5 Concluding Remarks -- Acknowledgments -- References -- 9 Capillary Electrophoresis with Electrochemical Detection -- 9.1 Principles of Electrochemical Detection -- 9.1.1 Amperometric Detection -- 9.1.2 Potentiometric Detection -- 9.1.3 Conductivity Detection -- 9.2 Interfacing Amperometric Detection to Capillary Electrophoresis -- 9.2.1 Off-Column Detection -- 9.2.2 End-Column Detection -- 9.2.3 Use of Multiple Detection Electrodes -- 9.2.4 Pulsed Amperometric Detection -- 9.2.5 Nonaqueous EC Detection -- 9.2.6 Electrode Material -- 9.2.7 Dual Conductivity and Amperometric Detection -- 9.3 Interfacing Electrochemical Detection to Microfluidic Capillary Electrophoresis -- 9.3.1 End-Column Detection -- 9.3.2 Pulsed Amperometric Detection -- 9.3.3 Off-Channel Detection -- 9.3.4 Electrode Material -- 9.3.5 Portable CE and MCE Systems -- 9.3.6 Applications of CE-MCE with AD -- 9.3.7 Future Directions for CE-MCE with EC Detection -- References. 327 $a10 Overcoming Challenges in Using Microchip Electrophoresis for Extended Monitoring Applications. 330 8 $aExplores the benefits and limitations of the latest capillary electrophoresis techniques Capillary electrophoresis and microchip capillary electrophoresis are powerful analytical tools that are particularly suited for separating and analyzing biomolecules. In comparison with traditional analytical techniques, capillary electrophoresis and microchip capillary electrophoresis offer the benefits of speed, small sample and solvent consumption, low cost, and the possibility of miniaturization. With contributions from a team of leading analytical scientists, Capillary Electrophoresis and Microchip Capillary Electrophoresis explains how researchers can take full advantage of all the latest techniques, emphasizing applications in which capillary electrophoresis has proven superiority over other analytical approaches. The authors not only explore the benefits of each technique, but also the limitations, enabling readers to choose the most appropriate technique to analyze a particular sample. The book's twenty-one chapters explore fundamental aspects of electrophoretically driven separations, instrumentation, sampling techniques, separation modes, detection systems, optimization strategies for method development, and applications. Specific topics include: * Critical evaluation of the use of surfactants in capillary electrophoresis * Sampling and quantitative analysis in capillary electrophoresis * Capillary electrophoresis with electrochemical detection * Overcoming challenges in using microchip electrophoresis for extended monitoring applications * Capillary electrophoresis of intact unfractionated heparin and related impurities * Microchip capillary electrophoresis for in situ planetary exploration Each chapter begins with an introduction and ends with conclusions as well as references to the primary literature. Novices to the field will find this book an easy-to-follow introduction to core capillary electrophoresis techniques and methods. More experienced investigators can turn to the book for troubleshooting tips and expert advice to guide them through the most advanced applications. 606 $aCapillary electrophoresis 606 $aMicrotechnique 615 0$aCapillary electrophoresis. 615 0$aMicrotechnique. 676 $a502.8/2 701 $aGarcia$b Carlos D.$f1972-$01621211 701 $aChumbimuni-Torres$b Karin Y$01621212 701 $aCarrilho$b Emanuel$f1965-$01621213 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910812130103321 996 $aCapillary electrophoresis and microchip capillary electrophoresis$93954388 997 $aUNINA