LEADER 01232nam a2200229 i 4500 001 991004402926807536 005 20251016142608.0 008 251016s2025 it er 001 0 ita d 020 $a9788893854672 040 $aBibl. Dip.le Aggr. Matematica e Fisica - Sez. Matematica$beng 082 04$a515.353 084 $aLC QA377 084 $aAMS 35-01 100 1 $aGazzola, Filippo$0477156 245 10$aAdvanced partial differential equations for mathematical engineers :$bwith exercises /$cFilippo Gazzola 260 $aBologna :$bSocietà editrice Esculapio,$c2025 300 $a247 p. ;$c26 cm 520 $aThe monograph contains the description of physical models leading to some partial differential equations with applications. Both linear and nonlinear equations are considered. For each differential equation the main existing features are highlighted and complemented with examples and exercises. Preliminarly, a quick survey of the needed functional analytical tools is given: Sobolev spaces, the Lax-Milgram Theorem, the Galerkin method 650 4$aPartial differential equations 912 $a991004402926807536 996 $aAdvanced partial differential equations for mathematical engineers$94452401 997 $aUNISALENTO