LEADER 05356nam 2200649Ia 450 001 9910463946203321 005 20200520144314.0 010 $a981-270-678-X 035 $a(CKB)3360000000001226 035 $a(EBL)1681550 035 $a(SSID)ssj0000573037 035 $a(PQKBManifestationID)12270891 035 $a(PQKBTitleCode)TC0000573037 035 $a(PQKBWorkID)10529891 035 $a(PQKB)10432436 035 $a(MiAaPQ)EBC1681550 035 $a(WSP)00006228 035 $a(Au-PeEL)EBL1681550 035 $a(CaPaEBR)ebr10698903 035 $a(CaONFJC)MIL491680 035 $a(OCoLC)820942789 035 $a(EXLCZ)993360000000001226 100 $a20060804d2007 uy 0 101 0 $aeng 135 $aurcuu|||uu||| 181 $ctxt 182 $cc 183 $acr 200 00$aDNA repair, genetic instability, and cancer$b[electronic resource] /$feditors, Qingyi Wei, Lei Li, David J. Chen 210 $aHackensack, NJ $cWorld Scientific$dc2007 215 $a1 online resource (374 p.) 300 $aDescription based upon print version of record. 311 $a981-270-014-5 320 $aIncludes bibliographical references and index. 327 $aPreface; Contributors; Contents; Chapter 1 DNA Damage Sensing and Signaling Jamie L. Wood and Junjie Chen; ABSTRACT; 1. INTRODUCTION; 2. THE DNA DAMAGE CHECKPOINT; 3. RECOGNITION OF DNA DAMAGE; 4. ACTIVATION OF THE DNA DAMAGE RESPONSE; 5. ACTIVATION OF CELL CYCLE CHECKPOINTS; 5.1. G1/S Phase Checkpoint; 5.2. S-phase Checkpoint; 5.3. G2/M Checkpoint; 6. THE DNA DAMAGE RESPONSE AND CANCER; 7. SUMMARY; ACKNOWLEDGMENTS; References; Chapter 2 Base Excision Repair Bo Hang; ABSTRACT; 1. INTRODUCTION; 2. THE BER PATHWAY; 3. DNA GLYCOSYLASES; 3.1. Overview; 3.2. Excision of Alkylated Bases; 3.2.1. MPG 327 $a3.3. Excision of Deaminated Bases and Base Mismatches 3.3.1. UNG; 3.3.2. SMUG 1; 3.3.3. MBD4; 3.3.4. TDG; 3.4. Excision of Oxidized and Fragmented Bases; 3.4.1. OGG1; 3.4.2. NTH1; 3.4.3. NEILs; 3.4.4. MYH; 4. AP ENDONUCLEASES; 5. REGULATION OF BER FUNCTIONS; 5.1. Protein-Protein Interactions; 5.2. Protein Post-translational Modifications; 6. RELEVANCE TO CANCER SUSCEPTIBILITY; 6.1. Animal Models; 6.2. BER and Human Cancer Risk; 7. PERSPECTIVES; ACKNOWLEDGMENTS; Abbreviations; References; Chapter 3 Nucleotide Excision Repair Lei Li; ABSTRACT; 1. INTRODUCTION; 2. BASIC MECHANISM OF NER 327 $a3. PROTEIN FACTORS INVOLVED IN NUCLEOTIDE EXCISION REPAIR (FIG. 2)3.1. Lesion Recognition; 3.2. Introduction of Dual Incisions; 3.3. Repair Synthesis; 4. GENETICS OF NER AND THE ESSENTIAL ROLE OF NER IN PREVENTING TUMORIGENESIS; 5. APPROACHES IN STUDYING NER; 6. PERSPECTIVES; ACKNOWLEDGMENTS; References; Chapter 4 DNA Mismatch Repair: Biological Functions and Molecular Mechanisms Guo-Min Li; ABSTRACT; 1. INTRODUCTION; 2. THE MISMATCH REPAIR SYSTEM CORRECTS BIOSYNTHETIC ERRORS; 2.1. DNA Mismatch Repair in Escherichia coli; 2.2. Mismatch Repair in Human Cells 327 $a3. DEFECTS IN MMR DEFICIENCY LEAD TO HUMAN CANCER 3.1. Microsatellite Instability in HNPCC and Sporadic Colorectal Cancer; 3.2. Loss of MMR Function Is the Genetic Basis of HNPCC; 3.2.1. The linking of MMR defects with MSI tumors; 3.2.2. Germline mutations of MMR genes in HNPCC; 3.3. Restoration of MMR to Tumor Cells with MSI by MMR Gene Products; 3.4. Microsatellite Instability and MMR De.ciency in Non-Colorectal Cancers; 3.5. Mice with MMR Gene Knockouts Predisposed to Cancers; 3.6. Epigenetic Silencing of MMR Gene Expression Leads to Sporadic Cancers 327 $a3.7. MMR Deficiency and Inactivation of Genes Critical for Cellular Growth Control and Genomic Stability 4. THE MMR SYSTEM MEDIATES DNA DAMAGE SIGNALING; 4.1. MMR Deficiency and Drug Resistance; 4.2. MMR Proteins Promote DNA Damage-Induced Cell Cycle Arrest and Apoptosis; 4.3. MMR-Mediated Apoptosis Eliminates Potentially Tumorigenic Cells; 5. ROLE OF MMR IN OTHER DNA METABOLIC PATHWAYS; 6. CONCLUSION AND PERSPECTIVES; ACKNOWLEDGMENTS; References; Chapter 5 Mammalian Homologous Recombination Repair and Cancer Intervention Zhiyuan Shen and Jac A. Nickoloff; ABSTRACT; 1. INTRODUCTION 327 $a2. DNA DOUBLE-STRAND BREAK REPAIR BY HR 330 $aThis volume describes the elaborate surveillance systems and various DNA repair mechanisms that ensure accurate passage of genetic information onto daughter cells. In particular, it narrates how the cell cycle checkpoint and DNA repair machineries detect and restore DNA damages that are embedded in millions to billions of normal base pairs. The scope of the book ranges from biochemical analyses and structural details of DNA repair proteins, to integrative genomics and population-based studies. It provides a snapshot of current understanding about some of the major DNA repair pathways, including 606 $aCancer$xGenetic aspects 606 $aDNA repair 608 $aElectronic books. 615 0$aCancer$xGenetic aspects. 615 0$aDNA repair. 676 $a616.99/4042 701 $aChen$b David$cDr.$0890835 701 $aLi$b Lei$cDr.$0890836 701 $aWei$b Qingyi$0890837 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910463946203321 996 $aDNA repair, genetic instability, and cancer$91989950 997 $aUNINA LEADER 00757nam a2200229 u 4500 001 991004382636007536 005 20250605134215.0 008 250605s2002 gw r 001 0 eng d 020 $a3540668063 040 $aBibl. Dip.le Aggr. Ingegneria Innovazione - Sez. IngegneriaInnovazione$beng 082 0 $a620 100 1 $aBathe, Klaus-Jürgen$030965 245 10$aFinite-Elemente-Methoden /$cKlaus-Jürgen Bathe 250 $a2., überarbeitete Auflage 260 $aBerlin ;$aHeidelberg :$bSpringer-Verlag,$c2002 300 $aXVI, 735 p. :$bill ;$c24 cm 490 0 $aSpringer-Lehrbuch 650 0$aNumerical analysis 650 0$aEngineering mathematics 912 $a991004382636007536 996 $aFinite-Elemente-Methoden$94385648 997 $aUNISALENTO