LEADER 01139cam0-2200361---450- 001 990004882990403321 005 20121115115251.0 035 $a000488299 035 $aFED01000488299 035 $a(Aleph)000488299FED01 035 $a000488299 100 $a19990604d1970----km-y0itay50------ba 101 0 $aita 102 $aIT 105 $ay-------001yy 200 1 $aGuglielmo Volgare$estudio sul lessico della medicina medievale$fMaria Luisa Altieri Biagi 210 $aBologna$cForni$d1970 215 $a139 p.$d22 cm 225 1 $aStudi e materiali$v3. 300 $aIn testa al frontespizio: Università di Bologna. Istituto di glottologia 610 0 $aMedicina$aTerminologia$aMedioevo 610 0 $aGuglielmo da Saliceto$aCyrurgia$aLingua 676 $a457.01$v21$zita 676 $a470$v21$zita 700 1$aAltieri Biagi,$bMaria Luisa$f<1930- >$038653 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990004882990403321 952 $a457.01 ALT 1 BIS$bDFM9536$fFLFBC 952 $a457.01 ALT 1$bFil. Mod. 26106$fFLFBC 959 $aFLFBC 996 $aGuglielmo volgare$987461 997 $aUNINA LEADER 00596nam a2200193 i 4500 001 991004281429207536 005 20230627114643.0 008 130419s1906 it e 000 0 ita c 040 $aBibl. Dip.le Aggr. Scienze Economia - Sez. Settore Economico 082 0 $a342.45066402632$222 110 1 $aItalia.$0423419 245 10$aLegislazione sulla corte dei conti 260 $aNapoli :$bPietrocola,$c1906 300 $a99 p.$c18 cm 490 1 $aBiblioteca legale 650 7$aCorte dei conti 912 $a991004281429207536 996 $aLegislazione sulla corte dei conti$93393552 997 $aUNISALENTO LEADER 04557nam 22006975 450 001 9910481959703321 005 20251113204436.0 010 $a3-030-38644-9 024 7 $a10.1007/978-3-030-38644-3 035 $a(CKB)4100000011243677 035 $a(DE-He213)978-3-030-38644-3 035 $a(MiAaPQ)EBC6191810 035 $a(PPN)248394789 035 $a(MiAaPQ)EBC29090500 035 $a(EXLCZ)994100000011243677 100 $a20200505d2020 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aTheory of Translation Closedness for Time Scales $eWith Applications in Translation Functions and Dynamic Equations /$fby Chao Wang, Ravi P. Agarwal, Donal O' Regan, Rathinasamy Sakthivel 205 $a1st ed. 2020. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2020. 215 $a1 online resource (XVI, 577 p. 17 illus., 8 illus. in color.) 225 1 $aDevelopments in Mathematics,$x2197-795X ;$v62 300 $aIncludes index. 311 08$a3-030-38643-0 327 $aPreface -- Preliminaries and Basic Knowledge on Time Scales -- A Classification of Closedness of Time Scales under Translations -- Almost Periodic Functions and Generalizations on Complete-Closed Time Scales -- Piecewise Almost Periodic Functions and Generalizations on Translation Time Scales -- Almost Automorphic Functions and Generalizations on Translation Time Scales -- Nonlinear Dynamic Equations on Translation Time Scales -- Impulsive Dynamic Equations on Translation Time Scales -- Almost Automorphic Dynamic Equations on Translation Time Scales -- Analysis of Dynamical System Models on Translation Time Scales -- Index. 330 $aThis monograph establishes a theory of classification and translation closedness of time scales, a topic that was first studied by S. Hilger in 1988 to unify continuous and discrete analysis. The authors develop a theory of translation function on time scales that contains (piecewise) almost periodic functions, (piecewise) almost automorphic functions and their related generalization functions (e.g., pseudo almost periodic functions, weighted pseudo almost automorphic functions, and more). Against the background of dynamic equations, these function theories on time scales are applied to study the dynamical behavior of solutions for various types of dynamic equations on hybrid domains, including evolution equations, discontinuous equations and impulsive integro-differential equations. The theory presented allows many useful applications, such as in the Nicholson`s blowfiles model; the Lasota-Wazewska model; the Keynesian-Cross model; in those realistic dynamical models with a more complex hibrid domain, considered under different types of translation closedness of time scales; and in dynamic equations on mathematical models which cover neural networks. This book provides readers with the theoretical background necessary for accurate mathematical modeling in physics, chemical technology, population dynamics, biotechnology and economics, neural networks, and social sciences. 410 0$aDevelopments in Mathematics,$x2197-795X ;$v62 606 $aDifference equations 606 $aFunctional equations 606 $aHarmonic analysis 606 $aMathematical models 606 $aFunctions of real variables 606 $aDifference and Functional Equations 606 $aAbstract Harmonic Analysis 606 $aMathematical Modeling and Industrial Mathematics 606 $aReal Functions 615 0$aDifference equations. 615 0$aFunctional equations. 615 0$aHarmonic analysis. 615 0$aMathematical models. 615 0$aFunctions of real variables. 615 14$aDifference and Functional Equations. 615 24$aAbstract Harmonic Analysis. 615 24$aMathematical Modeling and Industrial Mathematics. 615 24$aReal Functions. 676 $a511 700 $aWang$b Chao$4aut$4http://id.loc.gov/vocabulary/relators/aut$0675172 702 $aAgarwal$b Ravi P$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aO' Regan$b Donal$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aSakthivel$b Rathinasamy$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910481959703321 996 $aTheory of Translation Closedness for Time Scales$92230323 997 $aUNINA