LEADER 01187nam a2200337 i 4500 001 991000996039707536 005 20020507181328.0 008 950321s1980 it ||| | ita 020 $a8820418568 035 $ab10786697-39ule_inst 035 $aLE01305477$9ExL 040 $aDip.to Matematica$beng 082 0 $a001.64 084 $aAMS 68P 084 $aHF5548.2 100 1 $aOcchini, Giulio$01500 245 12$aL'informatica nella gestione aziendale :$baspetti e prospettive d'impiego /$cGiulio Occhini 260 $a[Milano] :$bF. Angeli,$cc1980 300 $a423 p. :$bill. ;$c22 cm. 490 0 $aCollana dei "Quaderni di informatica" ;$v6 500 $aBibliography: p. [417]-423 650 4$aBusiness$xdata processing 650 4$aInformation storage 650 4$aRetrieval systems$xCongresses 650 4$aTheory of data 907 $a.b10786697$b23-02-17$c28-06-02 912 $a991000996039707536 945 $aLE013 68P OCC11 (1980)$g1$i2013000025711$lle013$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i10886916$z28-06-02 996 $aInformatica nella gestione aziendale$9106747 997 $aUNISALENTO 998 $ale013$b01-01-95$cm$da $e-$fita$git $h2$i1 LEADER 01056nam a2200265 i 4500 001 991004254736307536 005 20221028125349.0 008 221028s2000 it a er 001 0 ita d 020 $a8871665082 040 $aBibl. Dip.le Aggr. Scienze Umane e Sociali - Sez. Studi Storici 041 0 $aita 082 04$a362.110945511 100 1 $aCocchi, Antonio$d<1695-1758>$0516863 245 10$aRelazione dello Spedale di Santa Maria Nuova di Firenze /$cAntonio Cocchi ; a cura di Maria Mannelli Goggioli ; introduzione di Renato Pasta 260 $aFirenze :$bLe lettere,$cc2000 300 $a223 p., [6] c. di tav. :$bill. ;$c22 cm 490 0 $aMedicina e storia 500 $aTrascrizione del ms. conservato presso la Biblioteca nazionale centrale di Firenze 500 $aSegue: Appendice di documenti 651 0$aFirenze$xOspedale di Santa Maria Nuova 700 1 $aMannelli Goggioli, Maria 700 1 $aPasta, Renato 912 $a991004254736307536 996 $aRelazione dello Spedale di Santa Maria Nuova di Firenze$93375941 997 $aUNISALENTO LEADER 03418nam 2200625Ia 450 001 9910438143803321 005 20200520144314.0 010 $a3-642-33302-8 024 7 $a10.1007/978-3-642-33302-6 035 $a(CKB)3400000000102777 035 $a(SSID)ssj0000831484 035 $a(PQKBManifestationID)11470845 035 $a(PQKBTitleCode)TC0000831484 035 $a(PQKBWorkID)10872882 035 $a(PQKB)10283002 035 $a(DE-He213)978-3-642-33302-6 035 $a(MiAaPQ)EBC3070786 035 $a(PPN)168324083 035 $a(EXLCZ)993400000000102777 100 $a20121223d2013 uy 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aGuts of surfaces and the colored Jones polynomial /$fDavid Futer, Efstratia Kalfagianni, Jessica Purcell 205 $a1st ed. 2013. 210 $aHeidelberg ;$aNew York $cSpringer$dc2013 215 $a1 online resource (X, 170 p. 62 illus., 45 illus. in color.) 225 1 $aLecture notes in mathematics,$x1617-9692 ;$v2069 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-642-33301-X 320 $aIncludes bibliographical references (p. 163-166) and index. 327 $a1 Introduction -- 2 Decomposition into 3?balls -- 3 Ideal Polyhedra -- 4 I?bundles and essential product disks -- 5 Guts and fibers -- 6 Recognizing essential product disks -- 7 Diagrams without non-prime arcs -- 8 Montesinos links -- 9 Applications -- 10 Discussion and questions. 330 $aThis monograph derives direct and concrete relations between colored Jones polynomials and the topology of incompressible spanning surfaces in knot and link complements. Under mild diagrammatic hypotheses, we prove that the growth of the degree of the colored Jones polynomials is a boundary slope of an essential surface in the knot complement. We show that certain coefficients of the polynomial measure how far this surface is from being a fiber for the knot; in particular, the surface is a fiber if and only if a particular coefficient vanishes. We also relate hyperbolic volume to colored Jones polynomials. Our method is to generalize the checkerboard decompositions of alternating knots. Under mild diagrammatic hypotheses, we show that these surfaces are essential, and obtain an ideal polyhedral decomposition of their complement. We use normal surface theory to relate the pieces of the JSJ decomposition of the  complement to the combinatorics of certain surface spines (state graphs). Since state graphs have previously appeared in the study of Jones polynomials, our method bridges the gap between quantum and geometric knot invariants. 410 0$aLecture notes in mathematics (Springer-Verlag) ;$v2069. 606 $aKnot theory 606 $aThree-manifolds (Topology) 606 $aComplex manifolds 606 $aGeometry, Hyperbolic 615 0$aKnot theory. 615 0$aThree-manifolds (Topology) 615 0$aComplex manifolds. 615 0$aGeometry, Hyperbolic. 676 $a514.2242 700 $aFuter$b David$0479687 701 $aKalfagianni$b Efstratia$0521607 701 $aPurcell$b Jessica$0521608 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910438143803321 996 $aGuts of surfaces and the colored Jones polynomial$9836978 997 $aUNINA